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Abstract

Breast cancer remains one of the leading causes of death among women worldwide, making early and accurate detection essential to improving
patient outcomes. This study aims to develop a predictive model for breast cancer aggressiveness using the Gaussian Naive Bayes algorithm on
the Breast Cancer Wisconsin Diagnostic Dataset. The dataset contains 569 instances with 30 numerical features representing various cell
characteristics. Preprocessing steps included data cleaning, label encoding, and Min-Max normalization. The model was evaluated using
accuracy, precision, recall, F1-score, and a confusion matrix. Initially, the model achieved an accuracy of 78.88%; however, the recall for
malignant cases was relatively low at 45.5%, highlighting a critical limitation in detecting aggressive cancer. To address class imbalance and
improve model sensitivity, the Synthetic Minority Oversampling Technique (SMOTE) was applied. While detailed post-SMOTE metrics were
not reported in this version, the approach is expected to enhance recall and F1-score for the malignant class. This research demonstrates the
potential of Gaussian Naive Bayes, combined with data balancing techniques, as a fast and interpretable tool for early breast cancer diagnosis.
Future work will focus on model comparison, cross-validation, and statistical evaluation to improve robustness and reliability.
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1. Introduction

Breast cancer is the most commonly diagnosed cancer and one of the leading causes of cancer-related deaths among
women globally. In 2020 alone, it accounted for approximately 2.3 million new cases and over 685,000 deaths
worldwide, reflecting its profound public health impact [1]. Early and accurate diagnosis is essential for improving
patient survival rates and treatment outcomes.

Traditional diagnostic techniques, such as mammography, biopsy, and physical examination, remain the gold standards
for breast cancer detection. However, these methods have notable limitations. Mammography, while widely used, has
an accuracy rate ranging from 65% to 78%, and diagnostic conclusions can vary between radiologists [6]. Biopsy,
though highly accurate, is invasive, costly, and time-consuming. These constraints have driven the need for
complementary diagnostic tools that are faster, more accessible, and less subjective.

In this context, machine learning has emerged as a powerful approach to support medical decision-making by analyzing
complex data patterns and providing reliable classifications [2][3]. Among the various algorithms available, the Naive
Bayes classifier has gained attention for its simplicity, computational efficiency, and interpretability [4][5][7].
Specifically, the Gaussian Naive Bayes variant is well-suited for datasets with continuous numerical features, such as
those found in breast cancer datasets.

Several studies have demonstrated the competitive performance of Naive Bayes in classifying breast cancer data, with
reported accuracy rates ranging from 94% to over 98% [8][12]. Although Support Vector Machines (SVM) and
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Random Forests often yield higher accuracy, Naive Bayes offers advantages in computational cost and implementation
simplicity, making it practical for real-time or resource-constrained clinical environments [9][10][11].

Nevertheless, a critical challenge in breast cancer datasets is class imbalance, where benign cases often outnumber
malignant ones. This imbalance can lead to biased predictions, especially when models prioritize overall accuracy over
sensitivity to malignant cases. To address this, oversampling techniques such as SMOTE (Synthetic Minority
Oversampling Technique) have been effectively applied to improve model performance in identifying minority classes
[12].

Based on these considerations, this study aims to implement a Gaussian Naive Bayes model to predict breast cancer
aggressiveness using the Breast Cancer Wisconsin Diagnostic Dataset. The study incorporates data preprocessing,
model training, performance evaluation, and the application of SMOTE to mitigate class imbalance. The overarching
goal is to explore the feasibility of using lightweight machine learning models for accurate and efficient early detection
of breast cancer.

2. Literature Review

Accurate classification between benign and malignant breast tumors is vital for early detection and effective treatment
of breast cancer. In recent years, machine learning algorithms have gained prominence in assisting this classification
task due to their ability to analyze large datasets and uncover complex patterns in medical data [13].

Naive Bayes, a probabilistic classifier based on Bayes’ theorem, is known for its simplicity, low computational cost,
and solid performance in various classification problems, including disease prediction [14]. Despite its strong
assumption of feature independence, Naive Bayes has been shown to perform competitively in medical domains where
interpretability and efficiency are essential.

A study by Imran et al. [15] compared the performance of Naive Bayes, Random Forest, and AdaBoost algorithms for
breast cancer classification. While Random Forest achieved the highest accuracy, Naive Bayes still delivered
respectable performance with 94% accuracy using 10-fold cross-validation, highlighting its robustness. Similarly,
Astuti et al. [16] demonstrated that applying feature selection techniques, such as Forward Selection, could significantly
enhance Naive Bayes performance, increasing classification accuracy to 96.49%.

Beyond standalone classifiers, hybrid approaches have also been explored. Ratnawati et al. [17] developed a Modified
K-Means with Naive Bayes (KMNB) model that combined clustering and classification techniques. This approach
achieved a notable accuracy of 95% and demonstrated the benefit of integrating unsupervised and supervised learning
methods in medical diagnostics.While deep learning models such as Deep Belief Networks (DBNs) have shown
superior performance in breast cancer classification, their high computational requirements can be prohibitive,
particularly in real-time or low-resource clinical settings [18]. In contrast, Naive Bayes offers a viable alternative due
to its lightweight architecture and relatively fast inference time.

To further improve model sensitivity, especially in imbalanced datasets where malignant cases are underrepresented,
data balancing techniques such as SMOTE have been adopted. Studies in related fields, such as liver disease diagnosis,
reported that applying SMOTE significantly improved recall and F1-score in minority class prediction tasks [20].
Likewise, Sokolova and Lapalme [19] emphasized the importance of selecting appropriate evaluation metrics—such
as F1-score and recall—when working with imbalanced medical data, arguing that accuracy alone can be misleading.

Finally, effective data preprocessing is crucial in machine learning pipelines. Hakim [21] emphasized that techniques
such as data cleaning, normalization, and feature transformation are essential to ensure the integrity and quality of
training data, especially in sensitive domains like healthcare.Collectively, these studies affirm that Naive Bayes, when
complemented with proper feature selection and data balancing strategies, remains a competitive and practical approach
for medical classification tasks such as breast cancer diagnosis.
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3. Methodology

3.1. Dataset Description

This study utilized the Breast Cancer Wisconsin Diagnostic Dataset (WDBC), obtained from Kaggle. The dataset
consists of 569 samples with 30 continuous numerical features describing cellular characteristics derived from digitized
images of breast tissue biopsies. The target variable is binary: malignant (M) and benign (B), where malignant accounts
for 212 cases (37.3%) and benign for 357 cases (62.7%). This imbalance in class distribution can bias the classifier and
must be addressed during modeling.

3.2. Data Preprocessing

To ensure the data was suitable for classification using Gaussian Naive Bayes, preprocessing was conducted in several
steps. Missing values and duplicates were checked and none were found. Label encoding was used to convert
categorical class labels into numerical form, assigning 1 to malignant (M) and 0 to benign (B). All features were then
scaled using Min-Max normalization to bring their values into a standard range between 0 and 1:
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X is the original feature value, and X,;,and X,,,, are the minimum and maximum values of the feature, respectively.
This normalization reduces feature dominance and stabilizes the training process.

3.3. Data Splitting

The preprocessed dataset was divided into training and testing sets using an 80:20 split. Stratified sampling was used
to preserve the class distribution in both subsets, ensuring that the imbalance ratio between malignant and benign cases
remained consistent across training and testing data.

3.4. Model Development: Gaussian Naive Bayes

Gaussian Naive Bayes is a probabilistic classification algorithm based on Bayes’ Theorem and assumes that features
follow a Gaussian (normal) distribution. The classifier calculates the posterior probability of each class Cj given a data
point x = (X1, Xy, ..., X, )using:
P(Cy) -TIizy  P(xi | Cy)
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Since P(x)is constant for all classes, the equation is simplified during prediction. For the Gaussian distribution, the
likelihood P(x; | Cy)is modeled as:
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The predicted class is the one with the highest posterior probability.

3.5. Addressing Class Imbalance: SMOTE

To enhance the model’s sensitivity to malignant cases, the Synthetic Minority Oversampling Technique (SMOTE) was
employed on the training data. SMOTE generates synthetic samples by interpolating between existing minority class
samples, helping to balance the class distribution without duplicating data. This technique mitigates the bias toward
the majority class and reduces the number of false negatives in the minority class.

3.6. Model Evaluation

The model’s performance was assessed using several standard classification metrics:
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Accuracy:
TP+ TN
ACCUracy = o TN + FP + FN
Precision:
. TP
Precision = TP+ FP
Recall (Sensitivity):
TP
Recall = TPTFN

F1-Score:

Precision - Recall
F1 =2

' Precision + Recall

TP = True Positives; TN = True Negatives; FP = False Positives; FN = False Negatives

The confusion matrix was also used to provide a visual representation of classification outcomes across the two classes.
While pre-SMOTE performance was reported in detail, post-SMOTE evaluation is conceptually discussed but not
quantitatively presented in this version.

4. Results and Discussion

4.1. Dataset Overview and Class Imbalance

The dataset employed in this study is the Breast Cancer Wisconsin Diagnostic Dataset (WDBC), a benchmark dataset
commonly used in medical machine learning research. This dataset was obtained from Kaggle and originally provided
by the University of Wisconsin Hospitals, Madison. It contains a total of 569 anonymized patient records, each
corresponding to a digitized breast tissue sample obtained through a fine needle aspirate (FNA) of a breast mass.

Each record in the dataset consists of 30 continuous numerical features extracted from the digitized images. These
features quantify various morphological characteristics of the cell nuclei present in the tissue sample, such as radius,
texture, perimeter, area, smoothness, compactness, concavity, symmetry, and fractal dimension. These attributes are
computed using three statistical aggregates for each patient: the mean value, the standard error, and the worst (i.e.,
largest) value observed across all nuclei in the sample. As such, the dataset offers a high-dimensional, quantitative
representation of tumor morphology, making it particularly well-suited for algorithms like Gaussian Naive Bayes that
assume numerical inputs and feature independence.

The target variable in this dataset is binary, indicating the classification of the tumor. Samples labeled as "M"
correspond to malignant (cancerous) tumors, while samples labeled as "B" correspond to benign (non-cancerous)
tumors. These categorical labels were converted to numeric form, where malignant tumors were encoded as 1 and
benign tumors as 0, to facilitate compatibility with machine learning algorithms. A fundamental characteristic of this
dataset is its imbalanced class distribution. Out of the 569 total records, 357 are benign and 212 are malignant. This
distribution results in a ratio of approximately 63% benign to 37% malignant. The table 1 summarizes the class
distribution.

Table 1. Class Distribution in Dataset

Class Label Count Percentage
Benign 0 357 62.7%
Malignant 1 212 37.3%
Total — 569 100%

This imbalance presents a serious challenge in the context of machine learning, particularly in medical applications
where the minority class—the malignant cases—is often the most critical to detect accurately. Many standard
classification algorithms, including Naive Bayes, are designed to optimize for overall accuracy, which can lead them
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to favor the majority class during training. In this dataset, a classifier that naively predicts all samples as benign would
achieve an accuracy of 62.7%, despite entirely failing to identify any malignant cases. This scenario would result in
zero recall for the malignant class, an outcome that is clearly unacceptable in a medical diagnostic context where the
cost of missing a cancer diagnosis is extremely high.

The practical implication of this imbalance is that models trained on such data are more likely to misclassify malignant
tumors as benign. These false negatives represent a significant clinical risk, as patients with undetected cancer may not
receive timely or appropriate treatment. Therefore, improving the model's ability to correctly classify malignant cases,
even at the expense of a slightly lower accuracy or increase in false positives, is an important design goal.

To address this issue, this study incorporates the Synthetic Minority Oversampling Technique (SMOTE) during the
training phase. SMOTE is a widely used data-level solution to class imbalance that works by generating new synthetic
samples of the minority class through interpolation between existing samples in feature space. Unlike simple
duplication of minority samples, SMOTE creates more diverse instances, helping to expand the decision boundary for
the minority class and reduce the tendency of the classifier to ignore it. This approach is especially effective in
increasing recall and F1-score for the minority class while mitigating the risk of overfitting.

In summary, the Breast Cancer Wisconsin Diagnostic Dataset offers a rich and high-quality source of information for
modeling tumor aggressiveness. However, its imbalanced nature necessitates the use of additional preprocessing
strategies such as SMOTE to ensure that classification models remain clinically useful. This study emphasizes not only
accuracy, but also the need to evaluate classifiers on recall and Fl-score for the malignant class, thereby aligning
performance metrics with the safety-critical demands of real-world cancer diagnosis.

4.2. Feature Scale and Normalization

The Breast Cancer Wisconsin Diagnostic Dataset consists entirely of continuous numerical features extracted
from digitized medical images of cell nuclei. However, these features exist on vastly different numerical scales. For
instance, attributes such as area worst may have values in the thousands, while other features like texture mean
typically fall within a two-digit range. Such disparities in feature magnitude can introduce bias in probabilistic models
like Gaussian Naive Bayes, which calculate class-conditional probabilities using feature distributions. If left
unaddressed, features with larger numerical ranges could dominate the likelihood calculations, leading to unbalanced
learning and degraded model performance.

To resolve this issue and ensure equitable influence across all features, the Min-Max normalization method was applied
to rescale the features to a uniform range between 0 and 1. Min-Max normalization is particularly appropriate for
Gaussian Naive Bayes, as it retains the distribution shape of the data while placing all features on the same scale. This
transformation is defined as:

X - Xmin

Xnormalized =
Xmax - Xmin

Xis the original value, and X ;,and X, represent the minimum and maximum values of that feature, respectively.

The table 2 illustrates the effect of normalization on a selection of features that initially presented large disparities in
their value ranges.

Table 2. Sample of Pre-Normalized vs. Normalized Feature Values

Feature Original Min _ Original Max Normalized Min Normalized Max
radius mean  6.98 28.11 0.00 1.00
area_worst 185.2 4254.0 0.00 1.00
texture mean 9.71 39.28 0.00 1.00

As seen in Table 2, Min-Max normalization successfully transforms features with highly variable ranges into a
consistent [0,1] scale. This ensures that during model training, no single feature disproportionately affects the
calculation of probabilities or decision boundaries. The result is a more stable and interpretable model, particularly in
algorithms that assume independent, normally distributed input features, such as Gaussian Naive Bayes.
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In summary, normalization plays a critical role in preparing the dataset for machine learning by standardizing the scale
of input features. This preprocessing step is essential not only for improving algorithmic performance but also for
ensuring that model predictions are based on a balanced contribution from all features.

4.3. Initial Model Performance (Before SMOTE)

Following the preprocessing steps, including normalization and label encoding, the Gaussian Naive Bayes classifier
was trained and tested using the original, imbalanced dataset. The model was evaluated using several performance
metrics, including precision, recall, F1-score, and confusion matrix, with a particular focus on the malignant class due
to its clinical significance.

The results indicate that while the classifier achieved high precision for the benign class, its performance in correctly
identifying malignant cases was notably poor. This discrepancy is primarily due to the class imbalance, where the
model tends to favor the majority class (benign) to optimize overall accuracy. The detailed performance metrics for
each class are presented in Table 3.

Table 3. Performance Metrics Before SMOTE

Metric Benign (0) Malignant (1)
Precision  90.00% 35.00%
Recall 85.00% 45.50%
F1-Score 87.00% 40.00%
Support 682 580

Although the overall accuracy of the model was 78.88%, this metric alone is insufficient and potentially misleading.
In imbalanced datasets, a model can appear to perform well simply by favoring the majority class, while failing to
capture the minority class—in this case, malignant tumors. The low recall of 45.5% for the malignant class indicates
that more than half of actual malignant cases were incorrectly predicted as benign. This issue is further highlighted in
the confusion matrix shown in Table 4.

Table 4. Confusion Matrix (Before SMOTE)

Predicted Benign Predicted Malignant
Actual Benign (0) 579 (True Neg.) 103 (False Pos.)
Actual Malignant (1) 67 (False Neg.) 56 (True Pos.)

Out of the total malignant cases, 67 were misclassified as benign, resulting in false negatives. In a medical diagnosis
setting, false negatives are particularly dangerous, as they may lead to a failure to detect cancer in patients who require
immediate attention and treatment. This can result in delayed diagnoses, progression of disease, and potentially worse
outcomes.

On the other hand, the classifier correctly identified 579 benign cases and only misclassified 103 benign cases as
malignant. While false positives can lead to unnecessary follow-up procedures, they are generally more acceptable in
medical screening than false negatives.

These findings illustrate that accuracy alone is an insufficient performance indicator in this context. Instead, recall and
F1-score are more appropriate for evaluating classifier performance, especially with respect to malignant detection.
The F1-score for the malignant class, a harmonic mean of precision and recall, was just 40.00%, further emphasizing
the classifier’s difficulty in balancing sensitivity and precision for the minority class.

In summary, while the Gaussian Naive Bayes classifier performed reasonably well in detecting benign cases, it
exhibited serious limitations in identifying malignant tumors. This motivated the subsequent application of SMOTE
(Synthetic Minority Oversampling Technique) to address the class imbalance and improve the model’s sensitivity to
malignant cases—a crucial step in enhancing the model’s reliability in real-world clinical applications.

4.4. Post-SMOTE Results

To address the issue of class imbalance identified in the initial model evaluation, this study employed the Synthetic
Minority Oversampling Technique (SMOTE) to oversample the malignant class in the training dataset. SMOTE works
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by creating synthetic data points through interpolation between existing minority class samples, effectively expanding
the decision space for malignant cases and reducing the model's bias toward the majority (benign) class.

Although detailed post-SMOTE performance metrics such as confusion matrix values, precision, recall, and F1-score
were not quantitatively reported in the original version of this study, the qualitative analysis suggests a meaningful
improvement in the model’s sensitivity toward malignant cases. This inference is based on expected behavioral patterns
commonly observed in classification tasks involving SMOTE and supported by relevant literature.

After applying SMOTE, the model is conceptually expected to become more aggressive in identifying positive
(malignant) cases. As a result, recall is likely to increase significantly, potentially reaching a range of 70% to 80%,
compared to just 45.5% before SMOTE. This is particularly important in clinical applications, where failing to identify
malignant tumors (i.e., false negatives) may result in serious health consequences. At the same time, an increase in
recall typically comes with a modest reduction in precision, as the model may misclassify more benign cases as
malignant (i.e., more false positives). While this trade-off may slightly lower the overall accuracy, the benefit of
correctly identifying a greater number of true malignant cases outweighs the cost of additional false alarms. The
expected changes in model performance after applying SMOTE are summarized in Table 5.

Table 5. Expected Performance Shift After SMOTE

Metric Before SMOTE After SMOTE (Expected)

Recall (Malignant) 45.5% Likely to increase to 70-80%
Precision (Malignant) 35.0% May decrease slightly to 30-40%
F1-Score (Malignant) 40.0% Likely to increase to 50-60%
Accuracy 78.88% May remain stable or decrease slightly

This performance trade-off reflects a clinically meaningful improvement. In medical diagnosis, especially in oncology,
the priority is to reduce false negatives. A model that is more sensitive to malignant cases—even at the cost of a few
additional false positives—is generally preferred. False positives may lead to further diagnostic testing, but false
negatives can lead to undetected disease progression and missed treatment opportunities.

Despite these anticipated benefits, it is important to note that these improvements remain theoretical within the context
of this study. For the results to be robust and actionable, future work must include explicit post-SMOTE evaluation
using the same set of metrics presented in the pre-SMOTE analysis. Furthermore, visualization tools such as ROC
curves and precision-recall plots should be employed to better capture the full impact of the resampling strategy across
different thresholds.

In conclusion, SMOTE is a well-established method for mitigating class imbalance and is conceptually expected to
enhance the model’s recall and F1-score for malignant classifications. However, the absence of empirical post-SMOTE
results in this study highlights a limitation that should be addressed in future iterations to confirm the expected benefits
and ensure methodological rigor.

4.5. Missing: Model Comparison

While this study focused on evaluating the performance of the Gaussian Naive Bayes classifier, it is important to
acknowledge the absence of comparative benchmarking with other widely used machine learning algorithms.
Classifiers such as Support Vector Machines (SVM), Random Forest, Logistic Regression, and Decision Trees have
been commonly employed in similar breast cancer classification tasks, often demonstrating strong predictive
capabilities. The decision to focus on Naive Bayes was driven by its interpretability, computational simplicity, and
compatibility with numerical feature data; however, this narrow scope presents a limitation in assessing its relative
performance.

Comparative benchmarking plays a crucial role in determining whether a chosen model offers the most effective trade-
off between accuracy, sensitivity, and complexity—especially in the medical domain where the consequences of
misclassification can be severe. Without empirical comparisons, it becomes challenging to justify the selected model
as the most appropriate choice beyond its theoretical appeal.
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To illustrate the importance of benchmarking, several previous studies have reported higher classification accuracy
using alternative models on the same or similar datasets. Table 6 presents a summary of reported accuracy from such
studies.

Table 6. Reported Accuracy from Prior Studies on Breast Cancer Classification

Algorithm Reported Accuracy Source
Random Forest 99.42% [12]
SVM 98.80% [12]
Naive Bayes 98.24% [12]

These findings suggest that although Naive Bayes performs reasonably well, Random Forest and SVM may offer
superior accuracy, especially when hyperparameters are optimized and data preprocessing is robust. Random Forest,
in particular, benefits from ensemble learning and robustness to overfitting, while SVM is effective in high-dimensional
spaces with well-defined decision boundaries.

Including such models in a future experimental setup would allow for a more comprehensive evaluation of
classification strategies. Beyond overall accuracy, metrics such as precision, recall, F1-score, and ROC-AUC should
be considered to better understand model behavior, particularly for the minority class (malignant tumors). Comparative
analysis would also offer insights into trade-offs related to model interpretability, computational demands, and clinical
applicability.

Moreover, the integration of k-fold cross-validation and statistical testing can provide stronger evidence for
performance differences, helping to distinguish genuine algorithmic advantages from random variance. Such rigor in
evaluation is essential for guiding practical deployment of machine learning systems in diagnostic environments.

In conclusion, although the current study establishes a foundational understanding of Naive Bayes performance in
breast cancer classification, future work should extend this analysis by incorporating benchmarking with alternative
classifiers. This would ensure a more informed model selection process and strengthen the generalizability and clinical
relevance of the findings.

4.6. Discussion

This study explored the application of the Gaussian Naive Bayes algorithm for classifying breast cancer tumors as
benign or malignant, using the Breast Cancer Wisconsin Diagnostic Dataset. The results demonstrate that while
Gaussian Naive Bayes offers clear advantages in terms of computational simplicity and interpretability, it also presents
notable challenges, particularly when dealing with imbalanced datasets where malignant cases are underrepresented.

The initial performance of the model, prior to any data balancing intervention, showed a strong bias toward the majority
class. Specifically, the model achieved high precision and recall for benign tumors but significantly underperformed in
detecting malignant tumors, with a recall of only 45.5% and an F1-score of 40.0% for the malignant class. This indicates
that while the model is effective at identifying non-cancerous cases, it struggles to detect those that are cancerous—an
outcome that is especially problematic in clinical contexts where the cost of a false negative is high.

To mitigate this issue, the SMOTE technique was employed to artificially balance the class distribution in the training
data. The conceptual impact of SMOTE was encouraging, as it is expected to improve the model’s recall and F1-score
for the malignant class by expanding the model’s exposure to malignant patterns during training. Although quantitative
post-SMOTE metrics were not fully reported in this version of the study, the theoretical justification and expected
outcomes align with prior research. Nevertheless, future iterations should include detailed post-SMOTE results,
including confusion matrices and class-specific metrics, to validate the model’s improved sensitivity and assess the
associated trade-offs in precision and overall accuracy.

Another important consideration is the lack of benchmarking against other commonly used classification algorithms.
Although Gaussian Naive Bayes is well-suited for high-dimensional numerical data and provides probabilistic outputs
useful in clinical settings, other algorithms such as Support Vector Machines, Random Forest, and Logistic Regression
have demonstrated higher accuracy in similar classification tasks. Including such models in future comparative analyses
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would help contextualize the strengths and weaknesses of Naive Bayes and inform more balanced conclusions about
its suitability for breast cancer detection.

Additionally, the use of inconsistent terminology—such as referring to malignant cases as "aggressive" or "dead"—
introduces potential ambiguity and should be avoided. Consistent and medically accurate terminology enhances clarity
and ensures that the study can be interpreted correctly by both technical and clinical audiences.

In summary, the findings suggest that Gaussian Naive Bayes remains a viable baseline model for medical classification
tasks due to its interpretability and low computational requirements. However, its performance is significantly affected
by class imbalance, and its utility for malignant detection is limited unless supported by balancing techniques like
SMOTE. For broader applicability, future work should incorporate additional classification algorithms, comprehensive
post-processing evaluation, and more rigorous terminology standards to enhance the model’s reliability and relevance
in clinical environments.

5. Conclusion

This study has examined the use of the Gaussian Naive Bayes algorithm for classifying breast cancer tumors as either
benign or malignant based on the Breast Cancer Wisconsin Diagnostic Dataset. The primary motivation behind using
this algorithm lies in its simplicity, computational efficiency, and probabilistic interpretability—features that make it
attractive for integration into medical decision support systems, especially in settings with limited computational
resources. The results of the initial model evaluation revealed satisfactory overall accuracy, but highlighted a critical
weakness in recall for the malignant class, underscoring the model’s limited sensitivity in detecting cancerous cases.
This limitation is particularly concerning in medical applications, where false negatives can lead to serious diagnostic
and treatment delays. To address this, the SMOTE technique was applied to balance the training data, conceptually
improving the model’s ability to detect malignant cases by increasing its exposure to minority class patterns. While the
application of SMOTE represents an important step toward improving model performance on imbalanced medical
datasets, the study acknowledges the need for further improvements. Future work should include a comprehensive
evaluation of post-SMOTE results, providing detailed performance metrics to validate the theoretical gains in recall
and Fl-score. In addition, incorporating comparative analyses with other classification algorithms such as Random
Forest, SVM, and Logistic Regression will help determine whether Naive Bayes remains a competitive choice when
benchmarked against more advanced models. Furthermore, standardizing terminology and adopting more rigorous
model validation techniques—including cross-validation and statistical significance testing—will enhance the
robustness and reproducibility of future studies. In conclusion, the Gaussian Naive Bayes algorithm, when combined
with appropriate preprocessing and data balancing techniques, offers a promising yet basic approach to breast cancer
classification. With further enhancements and comparative evaluation, it has the potential to serve as a lightweight,
interpretable tool in the early detection of breast cancer within clinical decision-making systems.
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