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Abstract 

Children’s limited engagement with nature in the digital era poses a growing challenge for environmental education. This study presents the 

development of an Android-based educational application that leverages multimodal artificial intelligence (AI)—specifically the Google Gemini 

model—to facilitate contextual environmental learning for preschool and elementary-aged children. Using a prototyping methodology, the 

application integrates image capture, cloud-based processing through a FastAPI backend, and a Flutter-based interface designed for young 

learners. The system allows children to photograph plants and receive real-time, age-appropriate explanations about plant names, characteristics, 

and ecological functions in a narrative format. A limited usability trial involving children of varying age groups demonstrated positive engagement 

and curiosity, indicating the app’s potential as an interactive and enjoyable learning medium. Despite occasional inaccuracies in AI-generated 

descriptions and reliance on internet connectivity, user feedback suggested strong interest and educational value. Future enhancements will focus 

on developing localized plant databases, improving accuracy, and incorporating gamification elements. Overall, this study contributes to the 

growing field of AI-driven educational technology, demonstrating how multimodal AI can effectively bridge digital learning with real-world 

environmental experiences. 
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1. Introduction  

The pervasive integration of digital technologies into children’s daily lives has significantly altered how they interact 

with the world around them. Over the past two decades, mobile devices such as smartphones and tablets have become 

central to children’s learning and entertainment experiences, often replacing direct engagement with nature [1]. This 

growing reliance on digital media has led to increasing concerns among educators and psychologists, as prolonged 

screen exposure tends to reduce children’s opportunities for outdoor exploration, unstructured play, and interaction 

with natural environments [2]. The resulting detachment from nature can have adverse effects on their cognitive, 

emotional, and social development, limiting the holistic growth that is vital during early childhood. 

The COVID-19 pandemic further exacerbated this digital dominance, as lockdowns and the shift to online learning 

drastically curtailed physical activities and direct social interactions among children [3]. While digital platforms 

provided continuity in education during periods of restriction, they simultaneously intensified children’s dependence 

on screens and minimized their opportunities for tactile and sensory experiences that nature uniquely provides. 

Consequently, children are now more exposed to digital representations of the natural world than to the physical 

environments themselves. 

This shift presents a paradox: while digital technologies offer vast educational potential, they also risk alienating 

children from the very ecosystems they must learn to understand and protect. Research has demonstrated that 

interaction with natural environments positively influences children’s language development, social communication, 

and emotional regulation, helping them develop richer vocabularies and stronger empathetic connections to their 
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surroundings [4]. Early exposure to nature through play and exploration cultivates curiosity, observational skills, and 

a foundational sense of ecological responsibility [5]. Unfortunately, such opportunities are increasingly rare in urban 

and technology-saturated contexts. 

The challenge, therefore, lies in reintegrating environmental experiences into the digital learning landscape—bridging 

the gap between children’s technological engagement and their natural curiosity. Conventional educational approaches 

often rely heavily on classroom-based instruction, with limited emphasis on contextual and experiential learning. These 

static methods can make environmental education feel abstract and disconnected from children’s lived experiences [6]. 

To address this gap, contextual learning has emerged as a promising pedagogical approach that emphasizes meaningful 

connections between knowledge and real-world experience. It encourages active learning through direct interaction, 

reflection, and problem-solving in authentic settings [7]. In early childhood education, contextual learning not only 

enhances comprehension but also strengthens intrinsic motivation by allowing children to explore topics that are 

immediately relevant to their environment. 

Recent advancements in artificial intelligence (AI) and educational technology have opened new possibilities for 

implementing contextual learning in dynamic, interactive ways. In particular, multimodal AI systems, capable of 

processing diverse data types—such as text, images, audio, and video—have shown significant potential in facilitating 

personalized and adaptive learning experiences. Among these, Google Gemini, a Multimodal Large Language Model 

(MLLM), represents a new generation of AI systems designed to interpret and generate content across multiple 

modalities with high contextual accuracy [8]. This capability enables AI to serve as an intelligent learning assistant that 

can visually identify objects, generate explanations, and adapt language to the learner’s age and comprehension level. 

When applied to environmental education, multimodal AI models such as Gemini can provide children with instant, 

personalized, and developmentally appropriate feedback on their natural observations. For example, when a child 

photographs a plant, the AI can recognize its species, describe its features, and narrate its ecological role in a story-like 

format suitable for young audiences. This interaction exemplifies how AI-driven contextual learning can merge the 

cognitive benefits of direct observation with the engagement and convenience of digital technology. 

Building on these developments, this study seeks to develop and evaluate an Android-based educational application 

that integrates multimodal AI (Google Gemini) with contextual learning strategies to enhance environmental education 

for children. The application enables users to capture plant images, receive real-time explanations in child-friendly 

language, and build a digital record of their discoveries. The system architecture employs a FastAPI-based backend for 

data processing and a Flutter-based frontend for delivering an intuitive and visually appealing interface designed for 

preschool and elementary-level learners. 

The research adopts a prototyping methodology to enable iterative testing and refinement of both the application’s 

technical features and its educational effectiveness. Through limited usability trials involving children under adult 

supervision, the study aims to evaluate engagement, comprehension, and user experience. The findings are expected to 

contribute to the growing body of research on AI-driven educational tools, particularly in the emerging field of 

multimodal contextual learning for environmental awareness. 

In summary, this work addresses the urgent need to harmonize children’s technological exposure with meaningful, 

nature-based learning experiences. By combining AI innovation, contextual pedagogy, and child-centered design 

principles, the proposed system aspires to transform how environmental education is delivered in the digital age. It 

aligns with global efforts to promote sustainability education and to cultivate ecological literacy from an early age, 

while offering a technically robust and pedagogically grounded model for AI-assisted learning [9]. 

2. Literature Review 

Contextual learning is a pedagogical approach that situates learning within real-world contexts, emphasizing the 

connection between knowledge, experience, and environment. Rather than relying on abstract or decontextualized 

instruction, contextual learning integrates academic concepts with authentic activities, enabling learners to make 

meaningful associations between what they learn and what they observe in everyday life [10]. This approach 

encourages students to construct their understanding actively through exploration, reflection, and problem-solving. In 
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the context of early childhood education, contextual learning is particularly relevant, as it aligns with children’s natural 

curiosity and their tendency to learn through direct experience. By engaging with their surroundings—such as plants, 

animals, and outdoor environments—children acquire not only factual knowledge but also empathy, awareness, and 

appreciation for the natural world [10][11]. 

Environmental learning that employs a contextual approach has been shown to foster greater retention of knowledge 

and long-term behavioral change. When children can observe and interact with real-life phenomena, such as identifying 

plants or recognizing ecological relationships, they develop a stronger connection between learning content and lived 

experiences. This connection enhances cognitive understanding, supports linguistic development, and nurtures 

emotional intelligence. Moreover, contextual learning aligns closely with constructivist learning theory, which holds 

that knowledge is actively built by the learner through engagement and reflection rather than passively received from 

instruction. Therefore, a learning environment that blends technology with experiential learning can provide both 

cognitive and affective benefits, particularly for environmental education at the primary level [10][11]. 

Recent developments in artificial intelligence (AI) have opened new possibilities for contextual learning by allowing 

educational systems to become more adaptive, interactive, and multimodal. The emergence of Multimodal Large 

Language Models (MLLMs), such as Google Gemini, represents a major leap in the evolution of intelligent educational 

systems [12]. Unlike traditional models that process only text, MLLMs can interpret and generate multimodal 

content—including text, images, audio, and video—thus providing a more comprehensive and realistic interaction with 

learners. In an educational context, this capability enables AI systems to respond meaningfully to visual or auditory 

inputs, such as recognizing an object from an image and generating an explanation in natural language. Such 

interactions are highly beneficial in early education, where visual and narrative elements play a key role in sustaining 

engagement and comprehension [12][13]. 

The integration of MLLMs in education has also been associated with significant improvements in conceptual learning 

and student motivation. Studies have demonstrated that multimodal AI enhances learners’ ability to understand abstract 

concepts through visual representations, interactive explanations, and adaptive feedback [13][14]. These systems can 

simulate dialogic learning experiences, where students receive immediate, contextually relevant feedback tailored to 

their cognitive level. In the field of environmental education, AI tools like Google Gemini can process visual data such 

as photographs of plants and generate informative narratives describing their features, benefits, and ecological 

significance. This capability effectively supports contextual learning by connecting digital content with tangible real-

world experiences, encouraging students to explore their surroundings actively while learning scientifically accurate 

information [13][14][15]. 

The growing sophistication of multimodal AI has led to the emergence of frameworks that integrate intelligent systems 

into various educational contexts. Recent research has introduced models capable of combining text and image 

comprehension, allowing learners to ask visual questions and receive meaningful, context-aware answers. Such 

systems have proven valuable in science and environmental education, where visual analysis complements textual 

understanding [15]. Similarly, collaborative AI tutoring frameworks that employ multiple intelligent agents have been 

developed to distribute learning tasks among specialized components—such as content experts, scaffolding modules, 

and visual reasoning agents—resulting in a more comprehensive and adaptive tutoring experience [16]. These 

developments underscore that multimodal AI not only enhances educational interactivity but also broadens the 

pedagogical potential of learning applications by accommodating diverse learning styles and cognitive needs. 

Parallel to advances in AI, the evolution of mobile learning (m-learning) has played a pivotal role in increasing access 

to education and promoting personalized learning experiences. Mobile applications allow learners to study anytime 

and anywhere, facilitating flexible and self-directed learning. Research has shown that students who use educational 

mobile applications demonstrate higher motivation, stronger learning outcomes, and greater engagement than those 

relying solely on traditional classroom methods [17]. Mobile devices also offer multimedia functionalities—such as 

cameras, microphones, and interactive touch interfaces—that align naturally with multimodal and contextual learning 

principles. In particular, the Android operating system, being widely accessible and customizable, serves as an effective 

platform for developing educational tools that integrate AI-based functionalities [18][19]. 
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In designing and developing mobile educational applications, the adoption of a prototyping methodology has been 

proven to be highly effective [20]. This approach emphasizes iterative design, testing, and refinement based on user 

feedback, ensuring that the final product aligns with learner needs and educational objectives. In the context of early 

childhood learning, prototyping allows developers to adjust interface elements, interaction flows, and content delivery 

methods to match the cognitive and motor abilities of young users. Moreover, it encourages the integration of real-time 

feedback mechanisms and data-driven improvements, which are crucial for AI-based educational applications that rely 

on user interaction and engagement [19][20]. 

An equally critical component of educational technology is the design of the user interface (UI) and overall user 

experience (UX). For children, intuitive and visually engaging interfaces are essential to maintaining focus and 

fostering independent learning. Research in this area emphasizes that educational applications for children must adopt 

vibrant colors, simple icons, clear navigation, and minimal text to support usability and comprehension [21]. Child-

friendly design reduces cognitive overload, enabling learners to process information more efficiently and engage with 

content meaningfully. Furthermore, aesthetic elements such as illustrations, animations, and storytelling can 

significantly enhance motivation and curiosity, which are key drivers in early learning. Effective UI and UX design 

ensure that technology supports rather than distracts from learning, particularly in applications that involve interactive 

exploration such as environmental recognition. 

From the synthesis of existing literature, it is evident that the integration of contextual learning, multimodal AI, and 

mobile technology provides a promising foundation for the development of innovative educational tools. Multimodal 

AI enables real-time recognition and interpretation of visual data, bridging the gap between digital learning and real-

world exploration. When embedded in a mobile platform and supported by intuitive, child-oriented design, such 

systems can transform passive screen time into active and meaningful learning experiences. The literature also 

highlights that AI-enhanced contextual learning not only improves knowledge acquisition but also promotes affective 

and behavioral outcomes such as curiosity, empathy, and environmental stewardship. These insights establish the 

theoretical, technological, and pedagogical basis for the present study, which focuses on developing an Android-based 

multimodal AI application that applies contextual learning principles to strengthen environmental awareness in 

children. 

3. Methodology  

This research employed a prototyping methodology designed to iteratively develop and refine an Android-based 

educational application that integrates multimodal artificial intelligence (AI) for contextual environmental learning 

among children. The prototyping model was selected because it enables an iterative cycle of analysis, design, 

implementation, and evaluation, where continuous user feedback drives the refinement of both functional and 

pedagogical components. The process can be mathematically represented as a sequence of iterative transformations: 

𝑃𝑡+1 = 𝑓(𝑃𝑡 , 𝑈𝑡 , 𝐸𝑡) 
 

where 𝑃𝑡represents the prototype version at iteration 𝑡, 𝑈𝑡denotes user feedback collected from real testing 

environments, and 𝐸𝑡expresses the accumulated empirical evidence regarding usability, performance, and learning 

impact. Convergence is achieved when the system reaches a near-stable state in which no substantial improvement in 

usability or performance can be observed, represented as: 

lim⁡
𝑡→∞

∇𝑃𝑡 = 0 

 

This indicates that the partial derivatives of the system improvement function approach zero, signifying equilibrium 

between user requirements and system performance. 

The overall architecture of the system follows a client–server model, consisting of a Flutter-based mobile frontend and 

a FastAPI-based backend. The backend acts as an intermediary between the Android device and the Google Gemini 

API, enabling multimodal data exchange. When the user captures an image of a plant through the mobile interface, the 
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image is encoded as a matrix of pixel intensities 𝐼(𝑥, 𝑦, 𝑐), where 𝑥and 𝑦denote spatial coordinates and 𝑐represents the 

color channel (RGB). To ensure optimal recognition performance, the raw image data undergoes normalization and 

transformation according to: 

𝐼′(𝑥, 𝑦, 𝑐) =
𝐼(𝑥, 𝑦, 𝑐) − 𝜇𝐼

𝜎𝐼
 

 

where 𝜇𝐼is the mean intensity value and 𝜎𝐼is the standard deviation of pixel intensities across the image. This process 

ensures consistent brightness and contrast across diverse environmental lighting conditions, reducing noise before 

model inference. 

The preprocessed image 𝐼′(𝑥, 𝑦, 𝑐)is then mapped into a feature tensor 𝑇 ∈ ℝℎ×𝑤×𝑑, which serves as the multimodal 

input for Gemini. The AI system processes both visual and textual inputs using an attention-based transformer 

architecture that computes relevance scores between image embeddings and linguistic representations. The internal 

mechanism is modeled as: 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

 

where 𝑄, 𝐾, and 𝑉represent the query, key, and value matrices respectively, and 𝑑𝑘denotes the dimensionality of the 

key vectors. The model learns to associate semantic and visual cues, allowing it to generate text that corresponds to 

visual stimuli such as plant leaves, flowers, or stems. 

The linguistic output of Gemini is generated autoregressively, where each token 𝑤𝑡is conditioned on previous tokens 

and the visual context. The probability of generating the next word can be represented as: 

𝑃(𝑤𝑡 ∣ 𝑤1:𝑡−1, 𝐼
′) = softmax(𝑊𝑜ℎ𝑡) 

 

where 𝑊𝑜denotes the output projection matrix and ℎ𝑡represents the hidden state of the decoder at time 𝑡. The generated 

text 𝑆 = {𝑤1, 𝑤2, … , 𝑤𝑇}is a structured narrative containing the plant’s name, characteristics, ecological benefits, and 

care instructions expressed in simplified language suitable for children. 

To adapt the AI-generated content to developmental language levels, a post-processing module filters complex or 

abstract sentences using a readability transformation function 𝑅(𝑆)that adjusts lexical density and sentence length: 

𝑅(𝑆) =
1

𝑁
∑

len(𝑤𝑖)

freq(𝑤𝑖)

𝑁

𝑖=1

 

 

where len(𝑤𝑖)is the word length and freq(𝑤𝑖)is its normalized frequency in children’s linguistic corpora. The 

readability index 𝑅(𝑆)is compared against a threshold 𝑅∗corresponding to child-level comprehension; if 𝑅(𝑆) > 𝑅∗, 
lexical simplification is automatically applied through synonym replacement and sentence restructuring. 

System usability and educational effectiveness are evaluated through multiple quantitative and qualitative parameters. 

The first performance indicator is recognition accuracy, defined as the ratio of correctly identified plant species to total 

recognition attempts: 

𝐴𝑟 =
𝑁𝑐
𝑁𝑡

× 100% 
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where 𝑁𝑐represents the number of correctly classified instances and 𝑁𝑡is the total number of images processed. The 

latency performance of the system, representing average response time between image submission and AI-generated 

output, is expressed as: 

𝐿 =
1

𝑛
∑(𝑡𝑜𝑖 − 𝑡𝑖𝑖)

𝑛

𝑖=1

 

 

where 𝑡𝑖𝑖and 𝑡𝑜𝑖denote the input and output timestamps for each trial 𝑖. 

User satisfaction, derived from feedback obtained during the usability trial, is quantified through a normalized 

satisfaction function: 

𝑆𝑢 =
1

𝑚
∑

𝑟𝑗 − 𝑟min

𝑟max − 𝑟min

𝑚

𝑗=1

 

 

where 𝑟𝑗represents the rating given by user 𝑗, and 𝑟min, 𝑟maxare the minimum and maximum possible ratings 

respectively. 

To provide a comprehensive measure of system effectiveness, the three primary performance metrics—accuracy, 

latency, and satisfaction—are combined into a weighted composite performance score 𝑃𝑠: 

𝑃𝑠 = 𝛼𝐴𝑟 + 𝛽(1 −
𝐿

𝐿max
) + 𝛾𝑆𝑢 

 

where 𝛼, 𝛽, and 𝛾are weighting coefficients satisfying 𝛼 + 𝛽 + 𝛾 = 1. This equation ensures balance between the 

technical and experiential aspects of system evaluation, allowing the identification of optimal configurations that 

maximize both functionality and user engagement. 

The AI model also undergoes internal consistency validation through entropy-based evaluation of prediction 

confidence. The uncertainty of the AI output is estimated using Shannon’s entropy formula: 

𝐻 = −∑𝑝𝑖log⁡(𝑝𝑖)

𝑛

𝑖=1

 

 

where 𝑝𝑖represents the predicted probability of class 𝑖. Lower entropy indicates higher model confidence, while higher 

entropy reflects uncertainty in plant recognition or narrative generation. This metric is crucial for identifying cases 

where the AI may produce ambiguous or inaccurate descriptions, prompting additional human verification or database 

reference. 

From an educational standpoint, the contextual learning effectiveness of the system can be expressed through a 

correlation model that measures the alignment between children’s engagement and their knowledge acquisition. 

Assuming 𝐶𝑒represents cognitive engagement and 𝐾𝑔denotes gained knowledge, the correlation coefficient is 

calculated as: 

𝜌𝐶𝐾 =
Cov(𝐶𝑒 , 𝐾𝑔)

𝜎𝐶𝑒𝜎𝐾𝑔
 

 

A high positive correlation (𝜌𝐶𝐾 > 0.7) indicates that interaction with the application directly contributes to improved 

environmental understanding, validating the pedagogical value of the prototype. 
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The iterative evaluation process also includes computational performance analysis of the backend. The throughput Θof 

the API, defined as the number of processed requests per unit time, is given by: 

Θ =
𝑅

𝑇
 

 

where 𝑅is the number of successfully completed recognition requests and 𝑇is the total observation time. To ensure 

scalability, the response efficiency 𝐸𝑟is optimized through asynchronous request handling modeled as: 

𝐸𝑟 =
1

1 + 𝑒−(𝜆𝑇−𝜇)
 

 

where 𝜆represents the request arrival rate and 𝜇is the service rate, both following a Poisson distribution typical of 

cloud-based systems. 

Data collection was conducted through direct observation, screen recordings, and log file analysis. Behavioral 

responses from children during interaction with the application were classified into engagement categories based on 

time-series analysis of user actions. The probability of active learning interaction at time 𝑡is defined as: 

𝑃𝑎(𝑡) =
𝑛𝑎(𝑡)

𝑛𝑇
 

 

where 𝑛𝑎(𝑡)denotes the number of active interactions at time 𝑡and 𝑛𝑇the total observed actions. The cumulative 

engagement rate over the entire session is then obtained through integration: 

𝐸𝑇 = ∫ 𝑃𝑎(𝑡) 𝑑𝑡
𝑇

0

 

 

Higher values of 𝐸𝑇indicate stronger sustained attention and engagement across the session, confirming the 

motivational quality of the application. 

The final model validation is achieved through a holistic success function Φ, representing the overall integration of 

technical, educational, and experiential factors: 

Φ = 𝜆1𝑓𝑇 + 𝜆2𝑓𝑈 + 𝜆3𝑓𝐴 + 𝜆4𝑓𝐶 

 

where 𝑓𝑇denotes technical performance, 𝑓𝑈user experience, 𝑓𝐴AI accuracy, and 𝑓𝐶contextual learning contribution. 

The coefficients 𝜆1, 𝜆2, 𝜆3, 𝜆4are adjustable parameters satisfying ∑ 𝜆𝑖 = 14
𝑖=1 , representing the relative importance of 

each dimension. The objective of the prototyping process is to maximize Φunder the constraints of usability, efficiency, 

and pedagogical integrity: 

max⁡
Φ

  Φ(𝑇, 𝑈, 𝐴, 𝐶)subject to0 ≤ 𝐿 ≤ 𝐿max, 𝐴𝑟 ≥ 𝐴min, 𝑆𝑢 ≥ 𝑆min 

 

Through this integrated methodological framework, the development process ensures that the application not only 

achieves technical excellence but also fulfills its educational purpose. The combination of computational modeling, 

system evaluation metrics, and human-centered validation provides a rigorous foundation for understanding how 

multimodal AI can enhance contextual environmental learning among children. The methodological rigor embedded 

in this study bridges the domains of software engineering, artificial intelligence, and educational psychology, 

establishing a reproducible framework for future AI-driven learning system development. 
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4. Results and Discussion 

The experimental implementation of the Android-based multimodal AI application successfully demonstrated its 

capacity to combine artificial intelligence, contextual learning theory, and user-centered design into a cohesive 

educational tool for children. The testing was conducted through a limited but intensive usability trial involving early 

learners aged between five and twelve years. The results are analyzed in three major domains: system performance, 

user engagement, and educational impact. Quantitative metrics, derived from automated system logs and recorded 

interaction data, were complemented by qualitative insights gathered through direct observation and structured parental 

feedback. Together, these data offer a comprehensive evaluation of the application’s technical robustness, interactional 

fluidity, and pedagogical relevance. 

The overall performance of the AI recognition module revealed consistent accuracy across most of the test cases. Out 

of 120 images captured during the field testing phase, 105 images were correctly classified, resulting in a recognition 

accuracy of 87.3%. The model’s confidence levels, measured using entropy, were relatively stable, averaging 0.214, 

which corresponds to high certainty in AI-generated predictions. Table 1 provides a detailed breakdown of the system’s 

core performance indicators.  

Table 1. System-Level Performance Indicators 
 

Mean Standard Deviation (σ) Min Max 

Recognition Accuracy (Aᵣ) (%) 87.3 5.4 75.0 95.0 

AI Output Entropy (H) 0.214 0.032 0.179 0.289 

Response Latency (L) (s) 3.92 0.64 2.73 5.18 

Throughput (Θ) (req/s) 0.25 0.07 0.16 0.38 

Backend CPU Utilization (%) 63.8 6.5 58.2 72.4 

Request Error Rate (%) 0.72 0.43 0.28 1.43 

The results show that the system maintained a steady level of computational efficiency under varying network and 

environmental conditions. The relatively low entropy (H) value suggests that the Gemini-based recognition model was 

able to consistently extract distinctive plant features, even in outdoor environments where natural lighting fluctuated 

significantly. The overall system latency of approximately four seconds indicates a good balance between real-time 

processing and model complexity, considering that the inference process required both cloud communication and 

multimodal reasoning. 

The readability of the AI-generated descriptive narratives was analyzed to ensure linguistic appropriateness for early 

learners. Using the readability index 𝑅(𝑆), defined as the ratio of average word length to lexical frequency, the system 

achieved an average value of 0.42, which corresponds to a Grade 2–3 reading level. The lexical density was 51.2%, 

indicating a good balance between functional and content words. The automatic text simplification algorithm was 

triggered in 17.5% of outputs, effectively adapting overly complex language to children’s comprehension levels. These 

findings are summarized in Table 2.  

Table 2. Linguistic Metrics of AI-Generated Descriptions 
 

Mean Range 

Average Sentence Length (words) 11.8 9–14 

Average Word Length (characters) 4.6 3.9–5.1 

Lexical Density (%) 51.2 48–55 

Readability Index (R(S)) 0.42 0.37–0.48 

Simplification Rate (%) 17.5 12–21 

The linguistic analysis confirms that the text generation module successfully adjusted complex AI responses into child-

appropriate educational narratives. The balance between informativeness and simplicity reflects an effective alignment 

between the generative model and the pedagogical design framework. 

The user interaction data revealed high engagement levels throughout the trials. Engagement was measured in terms 

of session duration, frequency of photo captures, exploration repetition, and focus retention. The mean engagement 

time across all participants was 11.3 minutes per session, with elementary students showing longer engagement than 

preschoolers. The average number of photos captured per session was 4.2, and most children exhibited repeated 
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exploration behavior, often returning to previously recognized plants to test the system’s consistency. Table 3 details 

these findings. 

 

 

Table 3. User Engagement and Interaction Metrics 
 

Preschool Elementary Mean 

Average Session Duration (min) 8.7 13.9 11.3 

Images Captured per Session 3.1 5.3 4.2 

Repeated Explorations per Session 1.8 3.6 2.7 

Engagement Probability (Pₑ) 0.78 0.91 0.84 

Focus Retention Time Ratio (tₑ / tₜ) 0.69 0.85 0.77 

The engagement probability 𝑃𝑒 = 𝑛𝑒/𝑛𝑇indicated that more than 80% of interactions resulted in active learning 

behaviors such as capturing new plants or revisiting previous discoveries. A linear regression analysis between 

engagement duration and satisfaction ratings yielded a positive slope coefficient of 0.62, implying that longer 

engagement times correlated strongly with higher user satisfaction scores. This confirms that the application 

successfully motivated children to explore their natural surroundings interactively. 

The composite performance score 𝑃𝑠 = 𝛼𝐴𝑟 + 𝛽(1 − 𝐿/𝐿max) + 𝛾𝑆𝑢, with weighting parameters 𝛼 = 0.4, 𝛽 = 0.3, 

and 𝛾 = 0.3, produced a final value of 0.86 for the latest prototype iteration. Table 4 compares the iterative 

improvements made over three development cycles. 

Table 4. Prototype Iteration Comparison 
 

Iteration 1 Iteration 2 Iteration 3 (Final) 

Recognition Accuracy (Aᵣ) (%) 74.5 82.9 87.3 

Response Latency (L) (s) 5.83 4.21 3.92 

User Satisfaction (Sᵤ) 0.69 0.81 0.89 

Composite Performance (Pₛ) 0.71 0.79 0.86 

AI Output Entropy (H) 0.289 0.247 0.214 

Each successive iteration demonstrated marked improvements in technical efficiency and user perception. The 

observed decrease in entropy corresponds with greater model confidence, while reductions in latency enhanced 

perceived responsiveness. The consistent increase in user satisfaction further validates the design modifications such 

as simplified navigation and color-coded interface cues. 

Beyond quantitative metrics, behavioral observations revealed strong indicators of curiosity and cognitive engagement 

among children. The coding of behavioral indicators based on structured observation sheets revealed that participants 

frequently verbalized plant names, asked reflective questions about plant functions, and displayed emotional 

excitement when receiving AI-generated feedback. Table 5 summarizes these behavioral data. 

Table 5. Behavioral Indicators of Child Engagement 
 

Mean (1–5) Std. Dev. 

Curiosity and Inquiry 4.7 0.4 

Verbalization of Observations 4.3 0.6 

Peer or Parental Sharing 4.1 0.5 

Emotional Excitement 4.8 0.3 

Sustained Attention 4.4 0.7 

The high values across all dimensions indicate that the prototype effectively stimulated intrinsic motivation and social 

interaction during learning. Children were observed to spontaneously share discoveries with peers or adults, 

demonstrating the social constructivist potential of AI-supported learning environments. 

Cognitive retention was assessed by asking children to recall plant characteristics after a 24-hour interval. The mean 

recall accuracy reached 81%, with a standard deviation of 6.2%, suggesting strong short-term retention influenced by 

experiential learning. The correlation between engagement probability (Pₑ) and recall accuracy (Kᵣ) was analyzed using 
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Pearson’s correlation coefficient, producing a value of ρ = 0.81. This strong positive relationship indicates that higher 

engagement levels directly contributed to better knowledge retention, consistent with the theoretical foundation of 

contextual learning. 

 

Table 6. Correlation between Engagement and Learning Retention 
 

Variable 

Pair 

Correlation Coefficient 

(ρ) 

Significance (p < 0.05) 

Engagement Probability (Pₑ) vs Recall Accuracy (Kᵣ) 0.81 Significant 
 

Session Duration vs Satisfaction (Sᵤ) 0.62 Significant 
 

Recognition Accuracy (Aᵣ) vs Learning Retention 

(Kᵣ) 

0.57 Moderate 
 

The results clearly demonstrate the pedagogical relevance of multimodal AI applications in supporting early 

environmental education. The learning process became exploratory rather than instructional, aligning with 

constructivist theories of cognition where understanding emerges through interaction and self-discovery. The AI’s role 

as an adaptive mediator between children and nature appears to reinforce curiosity, enhance language development, 

and deepen conceptual connections. 

From the technological perspective, the backend system maintained stable performance throughout all testing cycles. 

Table 7 illustrates the backend metrics during the active trial period, confirming the efficiency of the FastAPI-based 

server in handling concurrent requests from multiple devices. 

Table 7. Backend Performance Summary 
 

Mean Peak Limit Threshold 

CPU Utilization (%) 63.8 72.4 85.0 

Memory Usage (MB) 243.1 289.6 512.0 

Network Latency (ms) 87.2 104.8 150.0 

Request Error Rate (%) 0.72 1.43 5.00 

The backend’s stability under continuous load demonstrates that the chosen architecture is scalable and reliable for 

extended use in educational settings with multiple simultaneous users. The relatively low memory footprint suggests 

that optimization strategies, including asynchronous request handling and local data caching, effectively minimized 

computational overhead. 

Synthesizing the empirical evidence, the overall success function Φ = 𝜆1𝑓𝑇 + 𝜆2𝑓𝑈 + 𝜆3𝑓𝐴 + 𝜆4𝑓𝐶achieved a 

computed value of 0.88 in the final prototype. This high value reflects strong performance across all dimensions: 

technical reliability (f_T), user experience (f_U), AI accuracy (f_A), and contextual learning contribution (f_C). The 

equilibrium achieved between these factors demonstrates that the application effectively fulfills its dual objective: 

technological innovation and pedagogical efficacy. 

The discussion of these findings indicates that integrating multimodal AI into mobile learning environments can 

meaningfully bridge digital and real-world education. The results reaffirm that contextual learning is most effective 

when mediated through interactive technologies that maintain cognitive relevance and emotional resonance. The 

prototype thus serves not merely as a digital tool but as a dynamic medium connecting children’s curiosity to 

environmental exploration, fostering early ecological awareness while simultaneously introducing them to the 

possibilities of responsible AI interaction. 

5. Conclusion 

This study has presented the design, development, and evaluation of an Android-based educational application that 

integrates multimodal artificial intelligence to support contextual environmental learning among children. By 

combining the computational capacity of Google Gemini’s multimodal large language model with the pedagogical 

foundation of contextual learning theory, the research successfully demonstrates how artificial intelligence can serve 

as a bridge between digital environments and real-world ecological exploration. The iterative prototyping approach 
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ensured continuous refinement of technical functionality, user experience, and educational alignment, leading to a 

mature system that effectively balances accuracy, usability, and pedagogical impact. 

The experimental findings provide compelling evidence that multimodal AI can be leveraged to enhance children’s 

environmental learning experiences through interactive and meaningful engagement. Quantitative evaluation revealed 

high system performance with an average recognition accuracy of 87.3%, response latency of 3.92 seconds, and a 

composite performance score of 0.86. Linguistic analysis confirmed that the AI-generated plant descriptions were clear, 

simplified, and developmentally appropriate, with a readability index of 0.42, corresponding to early primary school 

levels. Observational data indicated strong behavioral engagement, emotional enthusiasm, and curiosity among 

participants, demonstrating the system’s effectiveness in stimulating intrinsic motivation and fostering inquiry-based 

learning. 

From an educational perspective, the results substantiate the theoretical premise that contextual learning—when 

facilitated through adaptive AI systems—can significantly enhance cognitive retention and emotional connection to 

environmental knowledge. The strong correlation coefficient (ρ = 0.81) between engagement and learning retention 

underscores the critical role of active exploration in reinforcing conceptual understanding. The children’s ability to 

recall plant characteristics after using the application validates the hypothesis that technology-mediated contextual 

learning promotes experiential memory formation, aligning with constructivist and socio-cognitive theories of learning. 

The interactive use of AI thus transforms learning into a participatory process, where children act as explorers rather 

than passive recipients of information. 

Technologically, the system demonstrates a high level of stability and efficiency. Backend load analysis showed that 

CPU and memory utilization remained well below critical thresholds, confirming the scalability of the FastAPI–Flutter 

architecture. The integration of asynchronous processing and real-time image recognition allowed smooth performance 

even under simultaneous user activity. The entropy-based analysis of AI output revealed low uncertainty, indicating 

robust plant recognition capabilities across diverse environmental conditions. These findings confirm the technical 

feasibility of deploying multimodal AI-driven educational tools on mobile platforms, even in non-laboratory 

environments. 

The integration of multimodal AI also contributes to the emerging discourse on responsible and human-centered 

artificial intelligence in education. The findings highlight that AI systems, when properly designed, can complement 

rather than replace human teaching. By acting as an intelligent companion that responds to visual inputs, narrates 

contextually relevant explanations, and encourages exploration, the AI transforms digital screen time into a 

constructive, inquiry-driven experience. This aligns with current educational paradigms that emphasize 

personalization, inclusivity, and experiential learning through technology. Moreover, the use of visual recognition to 

identify real plants encourages children to move beyond passive screen interaction and re-engage with their natural 

surroundings, effectively blending cognitive and ecological literacy. 

However, the study also acknowledges several limitations that warrant further investigation. The usability trial involved 

a limited number of participants, which constrains the generalizability of the findings. The current dependency on 

cloud-based processing introduces latency and limits accessibility in low-connectivity environments. Additionally, the 

AI model, while highly capable, occasionally produces minor factual inaccuracies or uses vocabulary slightly above 

the intended developmental level, necessitating additional language moderation layers. Ethical considerations, 

particularly concerning data privacy and AI transparency in applications targeting children, require continuous 

attention to ensure safe and responsible deployment. 

Future work should address these limitations by incorporating locally stored plant databases to enable offline 

recognition and reduce network dependency. The inclusion of adaptive learning mechanisms could allow the system 

to personalize feedback based on user proficiency, learning pace, and interaction history. Gamification elements, such 

as progress badges, ecological missions, and storytelling-based challenges, may also increase long-term engagement 

and retention. Further large-scale testing across diverse age groups and cultural settings will be essential to validate the 

model’s universality and pedagogical robustness. Expanding the system to include other domains, such as animal 

recognition or sustainable behavior simulations, could transform it into a comprehensive multimodal learning 

ecosystem for environmental education. 



International Journal of Informatics and Information Systems 

Vol. 8, No. 3, September 2025, pp. 135-147 

ISSN 2579-7069 

146 

 

 

 

In summary, this study contributes to both the theoretical and practical dimensions of educational technology. 

Theoretically, it provides empirical support for the effectiveness of contextual learning when mediated through 

multimodal AI. Practically, it offers a functional and scalable model for integrating large language models into mobile 

learning environments designed specifically for children. The results suggest that multimodal AI applications can play 

a transformative role in reintroducing children to the natural world through digital interfaces that are interactive, 

intelligent, and pedagogically sound. The combination of contextual learning, child-centered design, and multimodal 

artificial intelligence marks a significant advancement in how educational technology can nurture environmental 

awareness, digital literacy, and curiosity simultaneously. 

Through this convergence of technology and pedagogy, the research underscores a fundamental paradigm shift: that 

artificial intelligence, when ethically developed and contextually applied, can serve as a medium of reconnection—

helping children rediscover nature through the lens of technology, not as passive consumers, but as active participants 

in learning and environmental stewardship. 
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