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Abstract

Children’s limited engagement with nature in the digital era poses a growing challenge for environmental education. This study presents the
development of an Android-based educational application that leverages multimodal artificial intelligence (Al)—specifically the Google Gemini
model—to facilitate contextual environmental learning for preschool and elementary-aged children. Using a prototyping methodology, the
application integrates image capture, cloud-based processing through a FastAPI backend, and a Flutter-based interface designed for young
learners. The system allows children to photograph plants and receive real-time, age-appropriate explanations about plant names, characteristics,
and ecological functions in a narrative format. A limited usability trial involving children of varying age groups demonstrated positive engagement
and curiosity, indicating the app’s potential as an interactive and enjoyable learning medium. Despite occasional inaccuracies in Al-generated
descriptions and reliance on internet connectivity, user feedback suggested strong interest and educational value. Future enhancements will focus
on developing localized plant databases, improving accuracy, and incorporating gamification elements. Overall, this study contributes to the
growing field of Al-driven educational technology, demonstrating how multimodal Al can effectively bridge digital learning with real-world
environmental experiences.
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1. Introduction

The pervasive integration of digital technologies into children’s daily lives has significantly altered how they interact
with the world around them. Over the past two decades, mobile devices such as smartphones and tablets have become
central to children’s learning and entertainment experiences, often replacing direct engagement with nature [1]. This
growing reliance on digital media has led to increasing concerns among educators and psychologists, as prolonged
screen exposure tends to reduce children’s opportunities for outdoor exploration, unstructured play, and interaction
with natural environments [2]. The resulting detachment from nature can have adverse effects on their cognitive,
emotional, and social development, limiting the holistic growth that is vital during early childhood.

The COVID-19 pandemic further exacerbated this digital dominance, as lockdowns and the shift to online learning
drastically curtailed physical activities and direct social interactions among children [3]. While digital platforms
provided continuity in education during periods of restriction, they simultaneously intensified children’s dependence
on screens and minimized their opportunities for tactile and sensory experiences that nature uniquely provides.
Consequently, children are now more exposed to digital representations of the natural world than to the physical
environments themselves.

This shift presents a paradox: while digital technologies offer vast educational potential, they also risk alienating
children from the very ecosystems they must learn to understand and protect. Research has demonstrated that
interaction with natural environments positively influences children’s language development, social communication,
and emotional regulation, helping them develop richer vocabularies and stronger empathetic connections to their
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surroundings [4]. Early exposure to nature through play and exploration cultivates curiosity, observational skills, and
a foundational sense of ecological responsibility [5]. Unfortunately, such opportunities are increasingly rare in urban
and technology-saturated contexts.

The challenge, therefore, lies in reintegrating environmental experiences into the digital learning landscape—bridging
the gap between children’s technological engagement and their natural curiosity. Conventional educational approaches
often rely heavily on classroom-based instruction, with limited emphasis on contextual and experiential learning. These
static methods can make environmental education feel abstract and disconnected from children’s lived experiences [6].
To address this gap, contextual learning has emerged as a promising pedagogical approach that emphasizes meaningful
connections between knowledge and real-world experience. It encourages active learning through direct interaction,
reflection, and problem-solving in authentic settings [7]. In early childhood education, contextual learning not only
enhances comprehension but also strengthens intrinsic motivation by allowing children to explore topics that are
immediately relevant to their environment.

Recent advancements in artificial intelligence (Al) and educational technology have opened new possibilities for
implementing contextual learning in dynamic, interactive ways. In particular, multimodal Al systems, capable of
processing diverse data types—such as text, images, audio, and video—have shown significant potential in facilitating
personalized and adaptive learning experiences. Among these, Google Gemini, a Multimodal Large Language Model
(MLLM), represents a new generation of Al systems designed to interpret and generate content across multiple
modalities with high contextual accuracy [8]. This capability enables Al to serve as an intelligent learning assistant that
can visually identify objects, generate explanations, and adapt language to the learner’s age and comprehension level.

When applied to environmental education, multimodal AI models such as Gemini can provide children with instant,
personalized, and developmentally appropriate feedback on their natural observations. For example, when a child
photographs a plant, the Al can recognize its species, describe its features, and narrate its ecological role in a story-like
format suitable for young audiences. This interaction exemplifies how Al-driven contextual learning can merge the
cognitive benefits of direct observation with the engagement and convenience of digital technology.

Building on these developments, this study seeks to develop and evaluate an Android-based educational application
that integrates multimodal Al (Google Gemini) with contextual learning strategies to enhance environmental education
for children. The application enables users to capture plant images, receive real-time explanations in child-friendly
language, and build a digital record of their discoveries. The system architecture employs a FastAPI-based backend for
data processing and a Flutter-based frontend for delivering an intuitive and visually appealing interface designed for
preschool and elementary-level learners.

The research adopts a prototyping methodology to enable iterative testing and refinement of both the application’s
technical features and its educational effectiveness. Through limited usability trials involving children under adult
supervision, the study aims to evaluate engagement, comprehension, and user experience. The findings are expected to
contribute to the growing body of research on Al-driven educational tools, particularly in the emerging field of
multimodal contextual learning for environmental awareness.

In summary, this work addresses the urgent need to harmonize children’s technological exposure with meaningful,
nature-based learning experiences. By combining Al innovation, contextual pedagogy, and child-centered design
principles, the proposed system aspires to transform how environmental education is delivered in the digital age. It
aligns with global efforts to promote sustainability education and to cultivate ecological literacy from an early age,
while offering a technically robust and pedagogically grounded model for Al-assisted learning [9].

2. Literature Review

Contextual learning is a pedagogical approach that situates learning within real-world contexts, emphasizing the
connection between knowledge, experience, and environment. Rather than relying on abstract or decontextualized
instruction, contextual learning integrates academic concepts with authentic activities, enabling learners to make
meaningful associations between what they learn and what they observe in everyday life [10]. This approach
encourages students to construct their understanding actively through exploration, reflection, and problem-solving. In
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the context of early childhood education, contextual learning is particularly relevant, as it aligns with children’s natural
curiosity and their tendency to learn through direct experience. By engaging with their surroundings—such as plants,
animals, and outdoor environments—children acquire not only factual knowledge but also empathy, awareness, and
appreciation for the natural world [10][11].

Environmental learning that employs a contextual approach has been shown to foster greater retention of knowledge
and long-term behavioral change. When children can observe and interact with real-life phenomena, such as identifying
plants or recognizing ecological relationships, they develop a stronger connection between learning content and lived
experiences. This connection enhances cognitive understanding, supports linguistic development, and nurtures
emotional intelligence. Moreover, contextual learning aligns closely with constructivist learning theory, which holds
that knowledge is actively built by the learner through engagement and reflection rather than passively received from
instruction. Therefore, a learning environment that blends technology with experiential learning can provide both
cognitive and affective benefits, particularly for environmental education at the primary level [10][11].

Recent developments in artificial intelligence (Al) have opened new possibilities for contextual learning by allowing
educational systems to become more adaptive, interactive, and multimodal. The emergence of Multimodal Large
Language Models (MLLMs), such as Google Gemini, represents a major leap in the evolution of intelligent educational
systems [12]. Unlike traditional models that process only text, MLLMs can interpret and generate multimodal
content—including text, images, audio, and video—thus providing a more comprehensive and realistic interaction with
learners. In an educational context, this capability enables Al systems to respond meaningfully to visual or auditory
inputs, such as recognizing an object from an image and generating an explanation in natural language. Such
interactions are highly beneficial in early education, where visual and narrative elements play a key role in sustaining
engagement and comprehension [12][13].

The integration of MLLMs in education has also been associated with significant improvements in conceptual learning
and student motivation. Studies have demonstrated that multimodal Al enhances learners’ ability to understand abstract
concepts through visual representations, interactive explanations, and adaptive feedback [13][14]. These systems can
simulate dialogic learning experiences, where students receive immediate, contextually relevant feedback tailored to
their cognitive level. In the field of environmental education, Al tools like Google Gemini can process visual data such
as photographs of plants and generate informative narratives describing their features, benefits, and ecological
significance. This capability effectively supports contextual learning by connecting digital content with tangible real-
world experiences, encouraging students to explore their surroundings actively while learning scientifically accurate
information [13][14][15].

The growing sophistication of multimodal Al has led to the emergence of frameworks that integrate intelligent systems
into various educational contexts. Recent research has introduced models capable of combining text and image
comprehension, allowing learners to ask visual questions and receive meaningful, context-aware answers. Such
systems have proven valuable in science and environmental education, where visual analysis complements textual
understanding [15]. Similarly, collaborative Al tutoring frameworks that employ multiple intelligent agents have been
developed to distribute learning tasks among specialized components—such as content experts, scaffolding modules,
and visual reasoning agents—resulting in a more comprehensive and adaptive tutoring experience [16]. These
developments underscore that multimodal Al not only enhances educational interactivity but also broadens the
pedagogical potential of learning applications by accommodating diverse learning styles and cognitive needs.

Parallel to advances in Al, the evolution of mobile learning (m-learning) has played a pivotal role in increasing access
to education and promoting personalized learning experiences. Mobile applications allow learners to study anytime
and anywhere, facilitating flexible and self-directed learning. Research has shown that students who use educational
mobile applications demonstrate higher motivation, stronger learning outcomes, and greater engagement than those
relying solely on traditional classroom methods [17]. Mobile devices also offer multimedia functionalities—such as
cameras, microphones, and interactive touch interfaces—that align naturally with multimodal and contextual learning
principles. In particular, the Android operating system, being widely accessible and customizable, serves as an effective
platform for developing educational tools that integrate Al-based functionalities [18][19].
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In designing and developing mobile educational applications, the adoption of a prototyping methodology has been
proven to be highly effective [20]. This approach emphasizes iterative design, testing, and refinement based on user
feedback, ensuring that the final product aligns with learner needs and educational objectives. In the context of early
childhood learning, prototyping allows developers to adjust interface elements, interaction flows, and content delivery
methods to match the cognitive and motor abilities of young users. Moreover, it encourages the integration of real-time
feedback mechanisms and data-driven improvements, which are crucial for Al-based educational applications that rely
on user interaction and engagement [19][20].

An equally critical component of educational technology is the design of the user interface (UI) and overall user
experience (UX). For children, intuitive and visually engaging interfaces are essential to maintaining focus and
fostering independent learning. Research in this area emphasizes that educational applications for children must adopt
vibrant colors, simple icons, clear navigation, and minimal text to support usability and comprehension [21]. Child-
friendly design reduces cognitive overload, enabling learners to process information more efficiently and engage with
content meaningfully. Furthermore, aesthetic elements such as illustrations, animations, and storytelling can
significantly enhance motivation and curiosity, which are key drivers in early learning. Effective Ul and UX design
ensure that technology supports rather than distracts from learning, particularly in applications that involve interactive
exploration such as environmental recognition.

From the synthesis of existing literature, it is evident that the integration of contextual learning, multimodal Al, and
mobile technology provides a promising foundation for the development of innovative educational tools. Multimodal
Al enables real-time recognition and interpretation of visual data, bridging the gap between digital learning and real-
world exploration. When embedded in a mobile platform and supported by intuitive, child-oriented design, such
systems can transform passive screen time into active and meaningful learning experiences. The literature also
highlights that Al-enhanced contextual learning not only improves knowledge acquisition but also promotes affective
and behavioral outcomes such as curiosity, empathy, and environmental stewardship. These insights establish the
theoretical, technological, and pedagogical basis for the present study, which focuses on developing an Android-based
multimodal Al application that applies contextual learning principles to strengthen environmental awareness in
children.

3. Methodology

This research employed a prototyping methodology designed to iteratively develop and refine an Android-based
educational application that integrates multimodal artificial intelligence (Al) for contextual environmental learning
among children. The prototyping model was selected because it enables an iterative cycle of analysis, design,
implementation, and evaluation, where continuous user feedback drives the refinement of both functional and
pedagogical components. The process can be mathematically represented as a sequence of iterative transformations:

Pey1=f(P, U, Ep)

where P;represents the prototype version at iteration t, U,denotes user feedback collected from real testing
environments, and E expresses the accumulated empirical evidence regarding usability, performance, and learning
impact. Convergence is achieved when the system reaches a near-stable state in which no substantial improvement in
usability or performance can be observed, represented as:

lim VP, =0

This indicates that the partial derivatives of the system improvement function approach zero, signifying equilibrium
between user requirements and system performance.

The overall architecture of the system follows a client—server model, consisting of a Flutter-based mobile frontend and
a FastAPI-based backend. The backend acts as an intermediary between the Android device and the Google Gemini
API, enabling multimodal data exchange. When the user captures an image of a plant through the mobile interface, the
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image is encoded as a matrix of pixel intensities I (x, y, ¢), where xand ydenote spatial coordinates and crepresents the
color channel (RGB). To ensure optimal recognition performance, the raw image data undergoes normalization and
transformation according to:

[x,y,0) =

I'(x,y,¢) = p.

where p;is the mean intensity value and ojis the standard deviation of pixel intensities across the image. This process
ensures consistent brightness and contrast across diverse environmental lighting conditions, reducing noise before
model inference.

The preprocessed image I’ (x, y, ¢)is then mapped into a feature tensor T € R*"*¢ which serves as the multimodal

input for Gemini. The Al system processes both visual and textual inputs using an attention-based transformer
architecture that computes relevance scores between image embeddings and linguistic representations. The internal
mechanism is modeled as:

T
Attention(Q, K, V) = softmaX(Q

Jar

)14

where Q, K, and Vrepresent the query, key, and value matrices respectively, and d denotes the dimensionality of the
key vectors. The model learns to associate semantic and visual cues, allowing it to generate text that corresponds to
visual stimuli such as plant leaves, flowers, or stems.

The linguistic output of Gemini is generated autoregressively, where each token w;is conditioned on previous tokens
and the visual context. The probability of generating the next word can be represented as:

P(w; | wyp—q,1") = softmax (W, h;)

where W, denotes the output projection matrix and h,represents the hidden state of the decoder at time t. The generated
text S = {wy, wy, ..., wr }is a structured narrative containing the plant’s name, characteristics, ecological benefits, and
care instructions expressed in simplified language suitable for children.

To adapt the Al-generated content to developmental language levels, a post-processing module filters complex or
abstract sentences using a readability transformation function R(S)that adjusts lexical density and sentence length:

N

R(S) = 1 len(w;)
)= N freq(w;)

=1

where len(w;)is the word length and freq(w;)is its normalized frequency in children’s linguistic corpora. The
readability index R(S)is compared against a threshold R *corresponding to child-level comprehension; if R(S) > R*,
lexical simplification is automatically applied through synonym replacement and sentence restructuring.

System usability and educational effectiveness are evaluated through multiple quantitative and qualitative parameters.
The first performance indicator is recognition accuracy, defined as the ratio of correctly identified plant species to total
recognition attempts:

A, = &X 100%
T NL-
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where N represents the number of correctly classified instances and N;is the total number of images processed. The
latency performance of the system, representing average response time between image submission and Al-generated

output, is expressed as:
n
1
L = EZ(tOl - tii)
i=1

where t; and t, denote the input and output timestamps for each trial i.

User satisfaction, derived from feedback obtained during the usability trial, is quantified through a normalized
satisfaction function:

where 7jrepresents the rating given by user j, and Tyjp, Tmaxare the minimum and maximum possible ratings
respectively.

To provide a comprehensive measure of system effectiveness, the three primary performance metrics—accuracy,
latency, and satisfaction—are combined into a weighted composite performance score F;:

L
PszaAr‘l'.B(l_L ) +¥Sy

max

where a, 8, and yare weighting coefficients satisfying a + 8 + y = 1. This equation ensures balance between the
technical and experiential aspects of system evaluation, allowing the identification of optimal configurations that
maximize both functionality and user engagement.

The AI model also undergoes internal consistency validation through entropy-based evaluation of prediction
confidence. The uncertainty of the Al output is estimated using Shannon’s entropy formula:

n
H=- 2 pilog (p;)
i=1

where p;represents the predicted probability of class i. Lower entropy indicates higher model confidence, while higher
entropy reflects uncertainty in plant recognition or narrative generation. This metric is crucial for identifying cases
where the Al may produce ambiguous or inaccurate descriptions, prompting additional human verification or database
reference.

From an educational standpoint, the contextual learning effectiveness of the system can be expressed through a
correlation model that measures the alignment between children’s engagement and their knowledge acquisition.
Assuming Cerepresents cognitive engagement and Kjdenotes gained knowledge, the correlation coefficient is
calculated as:

Cov(Ce, Ky)

O-CeO-Kg

Pck =

A high positive correlation (pcx > 0.7) indicates that interaction with the application directly contributes to improved
environmental understanding, validating the pedagogical value of the prototype.
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The iterative evaluation process also includes computational performance analysis of the backend. The throughput ®@of
the API, defined as the number of processed requests per unit time, is given by:

where Ris the number of successfully completed recognition requests and T'is the total observation time. To ensure
scalability, the response efficiency E,.is optimized through asynchronous request handling modeled as:

1

b= T eamn

where Arepresents the request arrival rate and pis the service rate, both following a Poisson distribution typical of
cloud-based systems.

Data collection was conducted through direct observation, screen recordings, and log file analysis. Behavioral
responses from children during interaction with the application were classified into engagement categories based on
time-series analysis of user actions. The probability of active learning interaction at time tis defined as:

where n,(t)denotes the number of active interactions at time tand nrthe total observed actions. The cumulative
engagement rate over the entire session is then obtained through integration:

T
0

Higher values of Erindicate stronger sustained attention and engagement across the session, confirming the
motivational quality of the application.

The final model validation is achieved through a holistic success function @, representing the overall integration of
technical, educational, and experiential factors:

® = Mfr + Afv + A3fa + Aafc

where frdenotes technical performance, fjuser experience, f,Al accuracy, and f-contextual learning contribution.
The coefficients A;,1,, A5, A4are adjustable parameters satisfying Y+, A; = 1, representing the relative importance of
each dimension. The objective of the prototyping process is to maximize ®under the constraints of usability, efficiency,
and pedagogical integrity:

max (T, U, A, C)subject to0 < L < Lyaxs Ar = Aminy Su = Smin

Through this integrated methodological framework, the development process ensures that the application not only
achieves technical excellence but also fulfills its educational purpose. The combination of computational modeling,
system evaluation metrics, and human-centered validation provides a rigorous foundation for understanding how
multimodal Al can enhance contextual environmental learning among children. The methodological rigor embedded
in this study bridges the domains of software engineering, artificial intelligence, and educational psychology,
establishing a reproducible framework for future Al-driven learning system development.
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4. Results and Discussion

The experimental implementation of the Android-based multimodal Al application successfully demonstrated its
capacity to combine artificial intelligence, contextual learning theory, and user-centered design into a cohesive
educational tool for children. The testing was conducted through a limited but intensive usability trial involving early
learners aged between five and twelve years. The results are analyzed in three major domains: system performance,
user engagement, and educational impact. Quantitative metrics, derived from automated system logs and recorded
interaction data, were complemented by qualitative insights gathered through direct observation and structured parental
feedback. Together, these data offer a comprehensive evaluation of the application’s technical robustness, interactional
fluidity, and pedagogical relevance.

The overall performance of the Al recognition module revealed consistent accuracy across most of the test cases. Out
of 120 images captured during the field testing phase, 105 images were correctly classified, resulting in a recognition
accuracy of 87.3%. The model’s confidence levels, measured using entropy, were relatively stable, averaging 0.214,
which corresponds to high certainty in Al-generated predictions. Table 1 provides a detailed breakdown of the system’s
core performance indicators.

Table 1. System-Level Performance Indicators

Mean Standard Deviation (6) Min Max

Recognition Accuracy (Ar) (%) 87.3 5.4 75.0 95.0
Al Output Entropy (H) 0.214 0.032 0.179 0.289
Response Latency (L) (s) 3.92 0.64 2.73  5.18
Throughput (®) (req/s) 0.25 0.07 0.16  0.38
Backend CPU Utilization (%) 63.8 6.5 582 724
Request Error Rate (%) 0.72 0.43 0.28 1.43

The results show that the system maintained a steady level of computational efficiency under varying network and
environmental conditions. The relatively low entropy (H) value suggests that the Gemini-based recognition model was
able to consistently extract distinctive plant features, even in outdoor environments where natural lighting fluctuated
significantly. The overall system latency of approximately four seconds indicates a good balance between real-time
processing and model complexity, considering that the inference process required both cloud communication and
multimodal reasoning.

The readability of the Al-generated descriptive narratives was analyzed to ensure linguistic appropriateness for early
learners. Using the readability index R(S), defined as the ratio of average word length to lexical frequency, the system
achieved an average value of 0.42, which corresponds to a Grade 2—3 reading level. The lexical density was 51.2%,
indicating a good balance between functional and content words. The automatic text simplification algorithm was
triggered in 17.5% of outputs, effectively adapting overly complex language to children’s comprehension levels. These
findings are summarized in Table 2.

Table 2. Linguistic Metrics of Al-Generated Descriptions

Mean Range
Average Sentence Length (words)  11.8 9-14
Average Word Length (characters) 4.6 3.9-5.1

Lexical Density (%) 51.2 48-55
Readability Index (R(S)) 0.42 0.37-0.48
Simplification Rate (%) 17.5 1221

The linguistic analysis confirms that the text generation module successfully adjusted complex Al responses into child-
appropriate educational narratives. The balance between informativeness and simplicity reflects an effective alignment
between the generative model and the pedagogical design framework.

The user interaction data revealed high engagement levels throughout the trials. Engagement was measured in terms
of session duration, frequency of photo captures, exploration repetition, and focus retention. The mean engagement
time across all participants was 11.3 minutes per session, with elementary students showing longer engagement than
preschoolers. The average number of photos captured per session was 4.2, and most children exhibited repeated



International Journal of Informatics and Information Systems ISSN 2579-7069
Vol. 8, No. 3, September 2025, pp. 135-147 143

exploration behavior, often returning to previously recognized plants to test the system’s consistency. Table 3 details
these findings.

Table 3. User Engagement and Interaction Metrics

Preschool Elementary Mean

Average Session Duration (min) 8.7 13.9 11.3
Images Captured per Session 3.1 53 4.2
Repeated Explorations per Session 1.8 3.6 2.7
Engagement Probability (P.) 0.78 0.91 0.84
Focus Retention Time Ratio (t./t) 0.69 0.85 0.77

The engagement probability P, = n,/nrindicated that more than 80% of interactions resulted in active learning
behaviors such as capturing new plants or revisiting previous discoveries. A linear regression analysis between
engagement duration and satisfaction ratings yielded a positive slope coefficient of 0.62, implying that longer
engagement times correlated strongly with higher user satisfaction scores. This confirms that the application
successfully motivated children to explore their natural surroundings interactively.

The composite performance score P, = aA, + f(1 — L/Lyax) + vSy, with weighting parameters a« = 0.4, § = 0.3,
and y = 0.3, produced a final value of 0.86 for the latest prototype iteration. Table 4 compares the iterative
improvements made over three development cycles.

Table 4. Prototype Iteration Comparison

Iteration 1 Iteration 2 Iteration 3 (Final)

Recognition Accuracy (A) (%) 74.5 82.9 87.3
Response Latency (L) (s) 5.83 4.21 3.92
User Satisfaction (S.) 0.69 0.81 0.89
Composite Performance (Ps) 0.71 0.79 0.86
Al Output Entropy (H) 0.289 0.247 0.214

Each successive iteration demonstrated marked improvements in technical efficiency and user perception. The
observed decrease in entropy corresponds with greater model confidence, while reductions in latency enhanced
perceived responsiveness. The consistent increase in user satisfaction further validates the design modifications such
as simplified navigation and color-coded interface cues.

Beyond quantitative metrics, behavioral observations revealed strong indicators of curiosity and cognitive engagement
among children. The coding of behavioral indicators based on structured observation sheets revealed that participants
frequently verbalized plant names, asked reflective questions about plant functions, and displayed emotional
excitement when receiving Al-generated feedback. Table 5 summarizes these behavioral data.

Table 5. Behavioral Indicators of Child Engagement

Mean (1-5) Std. Dev.

Curiosity and Inquiry 4.7 0.4
Verbalization of Observations 4.3 0.6
Peer or Parental Sharing 4.1 0.5
Emotional Excitement 4.8 0.3
Sustained Attention 4.4 0.7

The high values across all dimensions indicate that the prototype effectively stimulated intrinsic motivation and social
interaction during learning. Children were observed to spontaneously share discoveries with peers or adults,
demonstrating the social constructivist potential of Al-supported learning environments.

Cognitive retention was assessed by asking children to recall plant characteristics after a 24-hour interval. The mean
recall accuracy reached 81%, with a standard deviation of 6.2%, suggesting strong short-term retention influenced by
experiential learning. The correlation between engagement probability (P.) and recall accuracy (K;) was analyzed using
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Pearson’s correlation coefficient, producing a value of p = 0.81. This strong positive relationship indicates that higher
engagement levels directly contributed to better knowledge retention, consistent with the theoretical foundation of
contextual learning.

Table 6. Correlation between Engagement and Learning Retention

Variable Correlation  Coefficient Significance (p < 0.05)
Pair (p)

Engagement Probability (P.) vs Recall Accuracy (K;) 0.81 Significant

Session Duration vs Satisfaction (S.) 0.62 Significant

Recognition Accuracy (Ar) vs Learning Retention 0.57 Moderate

(Ko)

The results clearly demonstrate the pedagogical relevance of multimodal Al applications in supporting early
environmental education. The learning process became exploratory rather than instructional, aligning with
constructivist theories of cognition where understanding emerges through interaction and self-discovery. The Al’s role
as an adaptive mediator between children and nature appears to reinforce curiosity, enhance language development,
and deepen conceptual connections.

From the technological perspective, the backend system maintained stable performance throughout all testing cycles.
Table 7 illustrates the backend metrics during the active trial period, confirming the efficiency of the FastAPI-based
server in handling concurrent requests from multiple devices.

Table 7. Backend Performance Summary

Mean Peak Limit Threshold
CPU Utilization (%) 63.8 72.4  85.0
Memory Usage (MB) 243.1 289.6 512.0
Network Latency (ms)  87.2 104.8 150.0
Request Error Rate (%) 0.72 143  5.00

The backend’s stability under continuous load demonstrates that the chosen architecture is scalable and reliable for
extended use in educational settings with multiple simultaneous users. The relatively low memory footprint suggests
that optimization strategies, including asynchronous request handling and local data caching, effectively minimized
computational overhead.

Synthesizing the empirical evidence, the overall success function ® = A,fr + A, fy + A3f4 + A4fcachieved a
computed value of 0.88 in the final prototype. This high value reflects strong performance across all dimensions:
technical reliability (f T), user experience (f_U), Al accuracy (f _A), and contextual learning contribution (f_C). The
equilibrium achieved between these factors demonstrates that the application effectively fulfills its dual objective:
technological innovation and pedagogical efficacy.

The discussion of these findings indicates that integrating multimodal Al into mobile learning environments can
meaningfully bridge digital and real-world education. The results reaffirm that contextual learning is most effective
when mediated through interactive technologies that maintain cognitive relevance and emotional resonance. The
prototype thus serves not merely as a digital tool but as a dynamic medium connecting children’s curiosity to
environmental exploration, fostering early ecological awareness while simultaneously introducing them to the
possibilities of responsible Al interaction.

5. Conclusion

This study has presented the design, development, and evaluation of an Android-based educational application that
integrates multimodal artificial intelligence to support contextual environmental learning among children. By
combining the computational capacity of Google Gemini’s multimodal large language model with the pedagogical
foundation of contextual learning theory, the research successfully demonstrates how artificial intelligence can serve
as a bridge between digital environments and real-world ecological exploration. The iterative prototyping approach
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ensured continuous refinement of technical functionality, user experience, and educational alignment, leading to a
mature system that effectively balances accuracy, usability, and pedagogical impact.

The experimental findings provide compelling evidence that multimodal Al can be leveraged to enhance children’s
environmental learning experiences through interactive and meaningful engagement. Quantitative evaluation revealed
high system performance with an average recognition accuracy of 87.3%, response latency of 3.92 seconds, and a
composite performance score of 0.86. Linguistic analysis confirmed that the Al-generated plant descriptions were clear,
simplified, and developmentally appropriate, with a readability index of 0.42, corresponding to early primary school
levels. Observational data indicated strong behavioral engagement, emotional enthusiasm, and curiosity among
participants, demonstrating the system’s effectiveness in stimulating intrinsic motivation and fostering inquiry-based
learning.

From an educational perspective, the results substantiate the theoretical premise that contextual learning—when
facilitated through adaptive Al systems—can significantly enhance cognitive retention and emotional connection to
environmental knowledge. The strong correlation coefficient (p = 0.81) between engagement and learning retention
underscores the critical role of active exploration in reinforcing conceptual understanding. The children’s ability to
recall plant characteristics after using the application validates the hypothesis that technology-mediated contextual
learning promotes experiential memory formation, aligning with constructivist and socio-cognitive theories of learning.
The interactive use of Al thus transforms learning into a participatory process, where children act as explorers rather
than passive recipients of information.

Technologically, the system demonstrates a high level of stability and efficiency. Backend load analysis showed that
CPU and memory utilization remained well below critical thresholds, confirming the scalability of the FastAPI-Flutter
architecture. The integration of asynchronous processing and real-time image recognition allowed smooth performance
even under simultaneous user activity. The entropy-based analysis of Al output revealed low uncertainty, indicating
robust plant recognition capabilities across diverse environmental conditions. These findings confirm the technical
feasibility of deploying multimodal Al-driven educational tools on mobile platforms, even in non-laboratory
environments.

The integration of multimodal Al also contributes to the emerging discourse on responsible and human-centered
artificial intelligence in education. The findings highlight that Al systems, when properly designed, can complement
rather than replace human teaching. By acting as an intelligent companion that responds to visual inputs, narrates
contextually relevant explanations, and encourages exploration, the Al transforms digital screen time into a
constructive, inquiry-driven experience. This aligns with current educational paradigms that emphasize
personalization, inclusivity, and experiential learning through technology. Moreover, the use of visual recognition to
identify real plants encourages children to move beyond passive screen interaction and re-engage with their natural
surroundings, effectively blending cognitive and ecological literacy.

However, the study also acknowledges several limitations that warrant further investigation. The usability trial involved
a limited number of participants, which constrains the generalizability of the findings. The current dependency on
cloud-based processing introduces latency and limits accessibility in low-connectivity environments. Additionally, the
Al model, while highly capable, occasionally produces minor factual inaccuracies or uses vocabulary slightly above
the intended developmental level, necessitating additional language moderation layers. Ethical considerations,
particularly concerning data privacy and Al transparency in applications targeting children, require continuous
attention to ensure safe and responsible deployment.

Future work should address these limitations by incorporating locally stored plant databases to enable offline
recognition and reduce network dependency. The inclusion of adaptive learning mechanisms could allow the system
to personalize feedback based on user proficiency, learning pace, and interaction history. Gamification elements, such
as progress badges, ecological missions, and storytelling-based challenges, may also increase long-term engagement
and retention. Further large-scale testing across diverse age groups and cultural settings will be essential to validate the
model’s universality and pedagogical robustness. Expanding the system to include other domains, such as animal
recognition or sustainable behavior simulations, could transform it into a comprehensive multimodal learning
ecosystem for environmental education.
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In summary, this study contributes to both the theoretical and practical dimensions of educational technology.
Theoretically, it provides empirical support for the effectiveness of contextual learning when mediated through
multimodal Al Practically, it offers a functional and scalable model for integrating large language models into mobile
learning environments designed specifically for children. The results suggest that multimodal Al applications can play
a transformative role in reintroducing children to the natural world through digital interfaces that are interactive,
intelligent, and pedagogically sound. The combination of contextual learning, child-centered design, and multimodal
artificial intelligence marks a significant advancement in how educational technology can nurture environmental
awareness, digital literacy, and curiosity simultaneously.

Through this convergence of technology and pedagogy, the research underscores a fundamental paradigm shift: that
artificial intelligence, when ethically developed and contextually applied, can serve as a medium of reconnection—
helping children rediscover nature through the lens of technology, not as passive consumers, but as active participants
in learning and environmental stewardship.
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