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Abstract 

Anemia is a prevalent hematological condition that requires accurate and timely diagnosis to ensure effective treatment. This study aims to 

compare the performance of several machine learning algorithms Random Forest, Support Vector Machine (SVM), Naive Bayes, and XGBoost 

in classifying different types of anemia based on Complete Blood Count (CBC) data. The dataset includes three diagnostic categories: Healthy, 

Normocytic hypochromic anemia, and Normocytic normochromic anemia. After preprocessing and normalization, each model was evaluated 

using accuracy, precision, recall, F1-score, and ROC-AUC. The results show that XGBoost achieved the highest overall performance with 99% 

accuracy and a perfect AUC of 1.00, followed closely by SVM and Naive Bayes. Naive Bayes showed lower performance, particularly in 

identifying normocytic normochromic anemia. These findings suggest that machine learning, especially ensemble-based models, holds strong 

potential in supporting clinical diagnosis of anemia using CBC data. 
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1. Introduction  

Anemia is one of the most common blood disorders, estimated to affect approximately 1.6 billion people worldwide 

[1]. According to the World Health Organization (WHO), anemia is a condition in which the number of red blood cells 

and the blood’s ability to carry oxygen are insufficient to meet the body’s physiological needs [2]. It is also defined as 

a decrease in red cell mass, hemoglobin, and hematocrit levels in the blood. Normal values for hemoglobin and 

hematocrit vary based on age and gender. If these values fall below the normal thresholds for a specific age and sex 

group, the individual is considered anemic. 

Hemoglobin levels are influenced by various factors such as age, sex, pregnancy status, health condition, as well as 

genetic and environmental factors. For instance, normal Hb levels in newborns range between 170–210 g/L, decrease 

to approximately 100 g/L by 6–9 months of age, and then gradually rise to 110 g/L for children up to 59 months, 115 

g/L for children up to 11 years old, 120 g/L for adult females, and around 130 g/L for adult males [2]. 

Common symptoms of anemia include fatigue, palpitations, headache, shortness of breath, and pallor of the conjunctiva 

and palms. Although these symptoms may serve as initial indicators, they have low sensitivity and moderate specificity, 

and therefore cannot be relied upon for definitive diagnosis [3]. These symptoms function more as early warning signs, 

particularly in contexts with limited access to laboratory testing. 

A study by Kassebaum et al. [4], which analyzed data from 189 countries and included multiple age groups and both 

sexes using WHO data from the 2010 Global Burden of Disease Study, estimated the global prevalence of anemia at 

32.9%. This condition is most commonly found in children under five years of age and in women, with Iron Deficiency 

Anemia (IDA) being the most frequently encountered type. Anemia has a multifactorial etiology, meaning it can be 

caused by various factors. 
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In developing countries, iron deficiency remains the primary cause. In Colombia, for example, anemia is strongly 

associated with malnutrition due to poverty. In 2022, Del Castillo et al. [5] was reported that 18.3 million people were 

living in poverty and 6.9 million in extreme poverty, despite a 3.1% decrease compared to the previous year. 

Medically, anemia can be classified based on its cause and the morphology of red blood cells. Microcytic anemia is 

commonly caused by iron deficiency, normocytic anemia is often associated with inflammation or chronic disease, 

while macrocytic anemia is typically caused by vitamin B12 or folate deficiency. Anemia can also be categorized by 

its severity as mild, moderate, or severe [6]. 

According to WHO reports, the global prevalence of anemia remains high, with around 29.9% of women aged 15–49 

and 39.8% of children aged 6 to 59 months being affected. In Africa, the prevalence among children in the same age 

group is as high as 60.2% [7]. If left undiagnosed and untreated, anemia can lead to serious complications. 

Given the widespread impact of anemia on public health and quality of life, early detection and timely intervention are 

essential. However, traditional diagnostic methods still pose significant challenges, especially for low-income 

populations. Limited access to quality healthcare services and the high cost of laboratory testing often prevent 

individuals from obtaining timely diagnoses [8]. This creates a vicious cycle where untreated anemia leads to worsening 

complications and a marked decline in patients’ quality of life. 

In the digital era, machine learning has emerged as a powerful approach for developing clinical decision-support 

systems, including for anemia detection and diagnosis. Several studies have demonstrated that machine learning–based 

predictive models can enhance both the efficiency and accuracy of medical diagnoses while also optimizing resource 

allocation through early warning systems that enable faster clinical response [9]. By reducing subjectivity in clinical 

interpretation, these technologies offer more consistent and reliable diagnostic outcomes. 

For instance, a study by Pullakhandam and McRoy [10] demonstrated that machine learning algorithms could 

accurately differentiate IDA from non-IDA using CBC data from NHANES (2003–2020). The models incorporated 

Explainable AI (XAI) techniques to interpret the contribution of hematological features, along with data balancing 

strategies such as random oversampling. The findings support the potential of machine learning for non-invasive 

anemia diagnosis, although further development is still needed to improve model interpretability and clinical 

applicability [11]. 

Based on this context, this study aims to compare the performance of several machine learning algorithms in classifying 

anemia types based on Complete Blood Count (CBC) data. The classification is focused on four categories: Healthy, 

Normocytic hypochromic anemia and Normocytic normochromic anemia. This approach seeks to develop an 

intelligent system that not only accelerates the diagnostic process but also supports more precise and personalized 

clinical decision-making, thereby potentially improving patient outcomes. 

By adopting a comparative approach using four algorithms, Support Vector Machine (SVM), Naïve Bayes and 

XGBoost, this research aims to identify the most effective model for anemia classification based on CBC data. 

Additionally, this study contributes to expanding the application of artificial intelligence in healthcare, particularly in 

areas with limited access to medical services. 

2. Literature Review 

A study conducted by Airlangga utilized CBC data to evaluate the performance of several machine learning algorithms 

for anemia classification. The models tested included Decision Tree, Extra Tree, Random Forest, ExtraTrees Regressor, 

XGBoost, LightGBM, and CatBoost. Among these seven models, the Decision Tree algorithm achieved the best 

performance, with a balanced accuracy of 94.17%, outperforming more complex ensemble models such as XGBoost 

and Random Forest. The study highlights that simpler models can produce competitive results when supported by 

effective feature selection and appropriate data preprocessing. 

These findings align with a study by Abdul-Jabbar et al. [12], who performed a comparative analysis of twelve 

classification algorithms to diagnose anemia using two CBC datasets, one international dataset and a newly developed 

dataset collected from several hospitals in Iraq. The results showed that LogitBoost, Random Forest, XGBoost, and 
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Multilayer Perceptron achieved the highest accuracies, with XGBoost emerging as the top-performing algorithm. This 

study emphasized that algorithm selection should be aligned with the characteristics of the dataset to achieve more 

systematic and comprehensive results. It also suggested exploring ensemble approaches to combine the strengths of 

different models while addressing their limitations. Overall, the study supports the use of machine learning and digital 

analytics tools in healthcare for generating valuable insights from large-scale datasets, ultimately improving diagnostic 

accuracy and advancing medical understanding. 

Furthermore, Végh et al. [13] conducted a comparative evaluation of nine machine learning classification models, 

including Ensemble methods, Decision Tree, SVM, K-Nearest Neighbor (KNN), Naïve Bayes, Neural Networks, 

Kernel methods, and Discriminant Analysis, using CBC data. All models were optimized using Bayesian 

hyperparameter tuning, trained on 90% of the data and tested on the remaining 10%, with a 10-fold cross-validation 

for robustness. The results showed that Ensemble (bagging) models achieved a validation accuracy of 99.22% and test 

accuracy of 100%, followed closely by Tree-based models (99.05% / 100%). Further analysis using permutation feature 

importance revealed that hemoglobin was the most influential feature for anemia classification. 

In addition, Kabootarizadeh et al. [14] proposed an Artificial Neural Network (ANN)-based model to accurately and 

efficiently differentiate between IDA and β-thalassemia trait (β-TT). The study utilized CBC test data from 268 patients 

and tested various ANN configurations using MATLAB to determine the optimal architecture. The results showed that 

a multilayer ANN with four input features and 70 neurons achieved high performance, with an accuracy of 92.5%, 

sensitivity of 93.13%, and specificity of 92.33%. 

3. Methodology  

3.1. Dataset Description 

The dataset used in this study was obtained from an open-source platform on Kaggle, titled “Anemia Types 

Classification,” which is accessible at the following link: https://www.kaggle.com/datasets/ehababoelnaga/anemia-

types-classification. This dataset contains 1,281 patient records based on CBC test results, which have been labeled 

according to anemia diagnoses made by professional medical personnel. The data were collected from various 

healthcare facilities and include commonly used hematological laboratory parameters to analyze the blood condition 

of patients, as summarized in Table 1. 

Table 1. Dataset Description 

Attribute Description 

WBC White Blood Cell count (10³/µL) 

LYMp Lymphocyte percentage (%) 

NEUTp Neutrophil percentage (%) 

LYMn Absolute lymphocyte count (10³/µL) 

NEUTn Absolute neutrophil count (10³/µL) 

RBC Red Blood Cell count (10⁶/µL) 

HGB Hemoglobin concentration (g/dL) 

HCT Hematocrit (%) 

MCV Mean Corpuscular Volume (fL) 

MCH Mean Corpuscular Hemoglobin (pg) 

MCHC Mean Corpuscular Hemoglobin Concentration (g/dL) 

PLT Platelet count (10³/µL) 

PDW Platelet Distribution Width (%) 

PCT Plateletcrit (%) 

Diagnosis Target variable representing anemia type  

3.2. Pre- Processing 

In this study, the anemia classification data underwent several preprocessing steps to ensure that the dataset met quality 

and consistency standards before being applied to machine learning models. One of the key steps in this process was 

normalizing the numerical features using the Min-Max Scaling method [15], [16] as shown in equation (1): 

https://www.kaggle.com/datasets/ehababoelnaga/anemia-types-classification
https://www.kaggle.com/datasets/ehababoelnaga/anemia-types-classification
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑧 =  
𝑧 − min(𝑧)

max(𝑧) − min(𝑧)
 

(1) 

Normalization was applied to several numerical attributes such as RBC, HGB, MCV, MCH, and other hematological 

parameters to ensure that each feature was scaled within the range of 0 to 1. The purpose of this normalization was to 

standardize feature scales, allowing the model to be trained more optimally and fairly, without bias toward any 

particular feature due to unit discrepancies. 

The next step involved checking for any potential missing values. Based on the evaluation, all attributes in the dataset 

were found to be complete, with no missing entries. A summary of the missing value inspection is presented in Table 

2. 

Table 2. Missing Value Summary 

Feature Number of Missing Values 

RBC 0 

HGB 0 

HCT 0 

MCV 0 

MCH 0 

MCHC 0 

RDW 0 

WBC 0 

PLT 0 

MPV 0 

PDW 0 

PCT 0 

Diagnosis 0 

Before selecting the features for model training, a correlation analysis was conducted using the Pearson Correlation 

Coefficient to assess the linear relationship between each input feature and the anemia diagnosis label. The analysis 

revealed that features such as HGB, RBC, and MCV had relatively strong correlations with the anemia types, indicating 

their high predictive potential for classification tasks. 

To enhance model performance and mitigate the risk of overfitting, a feature selection process was applied to the CBC 

data, using two primary methods. First, the Pearson Correlation Coefficient was utilized to measure the strength of the 

linear relationship between each numerical CBC attribute and the target variable (anemia type), selecting features with 

higher correlation values as more relevant for prediction. Additionally, the SelectKBest method with the f_classif 

scoring function was employed to automatically select the top K features based on their statistical significance in 

relation to the target variable. As a result, the most significant features for model training were Hemoglobin (HGB), 

Red Blood Cell Count (RBC), Mean Corpuscular Volume (MCV), Hematocrit (HCT), and MCHC. By retaining only 

these informative features, the training process became more computationally efficient and led to improved accuracy 

in the model's predictions [17], [18]. 

After the preprocessing stage was completed, the dataset was divided into two main subsets: a training set and a testing 

set. Specifically, 70% of the data was allocated for training the machine learning models, while the remaining 30% 

was used to evaluate model performance on unseen data. Proper dataset partitioning is essential to ensure that the 

trained models can generalize well to new, independent data. In this study, several machine learning algorithms were 

developed and their performance was compared using various evaluation metrics, including True Positive Rate (TPR), 

True Negative Rate (TNR), accuracy, recall (sensitivity), precision, specificity, and the F1-score. 

3.3. Exploratory Data Analysis (EDA) 

Before building the machine learning models, a feature selection step was carried out to identify the most influential 

attributes in the dataset [19]. The process began with a correlation analysis to evaluate relationships among the 
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numerical features. The dataset, provided in CSV format, was uploaded and processed using Google Colab as the data 

analysis platform. 

Various visualization techniques, such as heatmaps and scatter plots, were used to examine the strength of correlations 
between features and to determine their relevance to the classification task. These visual outputs were saved in TIF 
format for further analysis. Additionally, EDA was conducted using the Python programming language to gain deeper 
insights into data distributions and patterns. This stage was essential to ensure that the selected features were truly 
relevant and had a significant contribution to the development of an effective classification model. 

3.4. Machine Learning Model Development 

SVM is a supervised classification algorithm that aims to separate data points into distinct classes by identifying the 

optimal hyperplane that maximizes the margin between classes. In this study, SVM was applied to classify anemia 

types based on CBC parameters [20]. SVM is particularly effective in handling high-dimensional datasets and typically 

performs well after feature normalization, which ensures that all features contribute equally to the decision boundary 

[19]. To handle data that is not linearly separable, SVM uses kernel functions such as the linear kernel or Radial Basis 

Function (RBF) to map data into higher-dimensional space where separation becomes feasible. In the context of this 

research, the implementation of SVM aims to evaluate the algorithm’s ability to accurately classify patients into four 

anemia categories: Healthy, Normocytic hypochromic anemia and Normocytic normochromic anemia, based on their 

hematological attributes. 

Naïve Bayes is a probabilistic classification algorithm based on Bayes’ Theorem, which assumes that all features are 

conditionally independent given the target class. Despite its simplicity, Naïve Bayes remains highly effective and is 

often used as a baseline model in medical classification tasks due to its fast-processing speed and scalability particularly 

when working with small to medium-sized datasets [21]. One of the key strengths of Naïve Bayes lies in its 

computational efficiency and ability to produce reliable results even with limited data. It supports both categorical and 

numerical attributes, as long as the input features are properly encoded and normalized. However, its main limitation 

is the strong assumption of feature independence, which may reduce performance when there are strong correlations 

between clinical features. In this study, Naïve Bayes is employed as one of the comparative models to assess its 

effectiveness in classifying anemia types: Healthy, Normocytic hypochromic anemia, and Normocytic normochromic 

anemiabased on hematological parameters from the CBC dataset. It also serves as a baseline reference to compare 

against more advanced models. 

XGBoost is an advanced ensemble learning algorithm that constructs a series of decision trees in a sequential manner, 

where each subsequent tree attempts to correct the errors of the previous ones using gradient descent optimization. This 

algorithm integrates both L1 (Lasso) and L2 (Ridge) regularization to reduce the risk of overfitting and improve the 

model’s ability to generalize [22]. XGBoost is widely recognized for its high speed, robust performance, and ability to 

handle missing values, class imbalance, and high-dimensional datasets efficiently making it well-suited for clinical 

applications. In this study, XGBoost was implemented as one of the comparative machine learning models to evaluate 

its performance in classifying anemia types namely Healthy, Normocytic hypochromic anemia and Normocytic 

normochromic anemia, based on numerical features from the CBC dataset. Its results are compared with those of other 

algorithms, including SVM, and Naive Bayes, in order to identify the most effective model for multi-class anemia 

classification. 

3.5. Model Performance 

After the Machine Learning (ML) models were developed, their performance was evaluated using the 30% testing 

dataset. Several key evaluation metrics were employed in this study, including precision, recall (sensitivity), specificity, 

F1-Score, error rate, and accuracy. These metrics were derived from the confusion matrix and supported by visual tools 

such as ROC curves, all implemented using Python. The confusion matrix, as shown in Table 3, provides a detailed 

comparison between the predicted labels and the actual classes in the test dataset. This enabled a comprehensive 

performance analysis of each model, illustrating how well each algorithm classified the four types of anemia: Healthy, 

Normocytic hypochromic anemia and Normocytic normochromic anemia. 
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To increase the robustness of the results, 5-fold cross-validation was applied during model training and testing. This 

technique evaluates the model across different data partitions, helping to mitigate overfitting and improve 

generalizability. After hyperparameter tuning, each model was re-evaluated using the test dataset, and their final 

performance was compared using accuracy and other relevant metrics. 

Table 3. Confusion Matrix Structure  
Predicted Class 0 Predicted Class 1 Predicted Class 2 

Actual Class 0 True Positives (TP) FN, etc. ... 

Actual Class 1 ... TP ... 

Actual Class 2 ... ... TP 

In a multi-class classification setting, the confusion matrix is a tool used to evaluate the performance of the model by 

presenting the True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN) for each class. 

True Positives (TP) represent the instances that were correctly predicted as belonging to a specific class. False Positives 

(FP) occur when instances are incorrectly predicted as belonging to a class, even though they actually belong to another. 

True Negatives (TN) are the instances that were correctly identified as not belonging to a specific class, while False 

Negatives (FN) refer to instances that actually belong to a class but were incorrectly predicted as belonging to another. 

These values are essential for calculating various performance metrics, such as accuracy, precision, recall, and F1-

score, for each class individually. 

Based on the generated confusion matrix, several evaluation metrics were calculated to measure the performance of 

the classification models. 

Accuracy represents the proportion of all predictions that the model classified correctly. It is calculated using the 

formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(2) 

Precision also known as the positive predictive value, precision measures the proportion of correctly predicted positive 

cases out of all predicted positive cases: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3) 

Recall quantifies the model’s ability to correctly identify actual positive cases: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

Specificity also referred to as the TNR, specificity measures the proportion of actual negative cases that are correctly 

predicted by the model. It serves as a complement to recall: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(5) 

F1-score is the harmonic mean of precision and recall. It offers a balanced metric that accounts for both false positives 

and false negatives, and is particularly useful in imbalanced classification tasks. The score ranges from 0 (worst) to 1 

(best) [23]: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(6) 

4. Results and Discussion 

4.1. Correlation Analysis 

To better understand the interrelationships among variables in the CBC dataset and assess the potential for 

multicollinearity, a Pearson Correlation Coefficient analysis was conducted. The results of this analysis are visualized 



International Journal of Informatics and Information Systems 

Vol. 8, No. 4, December 2025, pp. 188-200 

ISSN 2579-7069 

194 

 

 

 

in a correlation heatmap, as shown in Figure 1. In this heatmap, a color gradient is used to represent the strength and 

direction of linear relationships between the variables. Dark red indicates a strong positive correlation, approaching 

+1, while blue represents a strong negative correlation, closer to -1. White or lighter shades are used to signify weak 

or negligible correlations, providing a clear visual indication of the relationships between the variables in the dataset. 

 

Figure 1. Heatmap Analysis of the Dataset 

The analysis revealed several notable patterns within the CBC dataset. HGB and HCT exhibit a very strong positive 

correlation of 0.92, reflecting their physiological connection as key components of red blood cells. Additionally, Mean 

Corpuscular Volume (MCV) shows a positive correlation with both Mean Corpuscular Hemoglobin (MCH) and HCT, 

with a correlation value of 0.61 for each, suggesting that these variables share overlapping information related to red 

blood cell size and hemoglobin content. Furthermore, moderate correlations were observed between Red Blood Cell 

count (RBC) and both HGB (0.46) and HCT (0.46), reinforcing their interdependence in clinical assessments of red 

blood cell health. 

In contrast, features such as White Blood Cell count (WBC), lymphocyte percentages (LYMp and LYMn), and platelet 

indices (PDW and PCT) show minimal correlation with most other features (typically between -0.1 and 0.2), indicating 

that they may provide independent or complementary information. Interestingly, no single feature dominates with high 

correlations across the board, which reflects the dataset's heterogeneity and diverse hematological dimensions. This 

diversity is advantageous for machine learning classification, as it minimizes the risk of multicollinearity and enhances 

the potential for uncovering meaningful patterns. The findings from this correlation analysis informed the feature 

selection process. Although some variables were highly correlated (e.g., HGB and HCT), all features were retained for 

model development due to their potentially distinct contributions, especially when using non-linear classifiers such as 

XGBoost. 

4.2. Machine Learning Models 

To evaluate the performance of the SVM classifier in diagnosing anemia, several performance metrics were computed, 

including class-specific precision, recall, and F1-score. These metrics provide insight into how well the model 

distinguishes among the three diagnostic categories: Healthy, Normocytic hypochromic anemia, and Normocytic 

normochromic anemia. The detailed results are presented in Table 4. 
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Table 4. SVM Model Performance Metrics 

Class Precision Recall F1-Score Support 

Healthy (0) 0.95 0.93 0.94 67 

Normocytic hypochromic anemia (1) 0.92 0.96 0.94 94 

Normocytic normochromic anemia (2) 0.92 0.89 0.91 54 

Accuracy — — 0.93 215 

Macro Average 0.93 0.92 0.93 215 

Weighted Average 0.93 0.93 0.93 215 

As shown in the table above, the SVM classifier achieved a high overall accuracy of 93%, with balanced precision and 

recall across all classes. These metrics suggest that the model is effective in distinguishing between different anemia 

types. To further analyze the prediction behavior and observe misclassification patterns, a confusion matrix was 

constructed as illustrated in the next section. 

 

Figure 2. Confusion Matrix of the SVM Model 

Figure 2 displays the confusion matrix for the SVM classifier in diagnosing anemia based on CBC data, comparing 

predicted class labels to the actual class labels. This matrix allows for a detailed assessment of the classification 

performance across different anemia categories. For the Healthy class (class 0), out of 67 actual healthy instances, 62 

were correctly classified, while 3 were misclassified as Normocytic hypochromic anemia and 2 as Normocytic 

normochromic anemia, indicating strong performance with minimal false positives. For Normocytic hypochromic 

anemia (class 1), this class was the most accurately predicted, with 90 out of 94 cases correctly classified. Only 2 

samples were incorrectly labeled as healthy, and 2 as Normocytic normochromic anemia, reflecting excellent recall 

and precision. For Normocytic normochromic anemia (class 2), out of 54 actual cases, 48 were correctly identified, 

while 5 were misclassified as Normocytic hypochromic anemia, and 1 as healthy. Although the performance was still 

strong, this class exhibited slightly more misclassifications compared to the other categories.The confusion matrix 

shows that the SVM model performs exceptionally well in classifying anemia types, particularly Normocytic 

hypochromic anemia, which had the highest number of correct predictions. Misclassifications were minimal and 

relatively balanced across classes, suggesting that the model generalizes well to unseen data.These results confirm the 

reliability of SVM in multiclass anemia diagnosis based on CBC features and highlight its potential as a clinical 

decision support tool. 

To assess the classification performance of the Naive Bayes model across three diagnostic categories Healthy, 

Normocytic hypochromic anemia, and Normocytic normochromic anemia, standard evaluation metrics such as 

precision, recall, and F1-score were used. Table 5 summarizes these results based on the test dataset. 
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Table 5. Naive Bayes Model Performance Metrics 

Class Precision Recall F1-Score Support 

Healthy (0) 0.71 0.87 0.78 67 

Normocytic hypochromic anemia (1) 0.82 0.72 0.77 94 

Normocytic normochromic anemia (2) 0.50 0.46 0.48 54 

Accuracy 
  

0.70 215 

Macro Average 0.68 0.68 0.68 215 

Weighted Average 0.70 0.70 0.70 215 

As shown in the table, the Naive Bayes classifier achieved an overall accuracy of 70.2%. The model demonstrated 

strong performance in identifying healthy individuals and those with normocytic hypochromic anemia. However, its 

ability to detect normocytic normochromic anemia was more limited, as reflected by the lower precision and recall for 

that class. To better understand where the model tends to misclassify, a confusion matrix is presented in the next 

section. 

 

Figure 3. Confusion Matrix of the Naive Bayes Model 

Figure 3 presents the confusion matrix for the Naive Bayes classifier, showcasing the model’s performance on 

individual classes in the test dataset. For the Healthy class (Class 0), out of 67 actual healthy cases, 58 were correctly 

classified, while 6 were misclassified as Normocytic hypochromic anemia and 3 as Normocytic normochromic anemia. 

This indicates strong recall for healthy individuals, though there is some overlap with anemic categories. For 

Normocytic hypochromic anemia (Class 1), of the 94 true cases, 68 were correctly predicted, but 22 were misclassified 

as Normocytic normochromic anemia and 4 as healthy. The classifier frequently confuses Class 1 and Class 2, likely 

due to overlapping CBC features between these anemia types. Finally, for Normocytic normochromic anemia (Class 

2), the model showed the weakest performance, correctly predicting only 25 out of 54 cases, while 20 were 

misclassified as healthy and 9 as Normocytic hypochromic anemia. The high misclassification rate suggests that this 

class is more challenging for the model to distinguish, possibly due to less distinctive or overlapping patterns in the 

data.The confusion matrix highlights that the Naive Bayes classifier performs reasonably well in identifying healthy 

individuals and normocytic hypochromic anemia cases. However, it struggles significantly to accurately detect 

normocytic normochromic anemia, with more than half of its cases misclassified. This outcome reflects Naive Bayes’ 

limitations in modeling complex or overlapping distributions, especially in multi-class medical diagnosis tasks 

involving subtle feature variations. Further refinement through feature selection, data balancing, or the use of more 
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flexible classifiers (e.g., XGBoost or SVM) may improve performance on underrepresented or harder-to-classify 

anemia types. 

To assess the classification performance of the XGBoost model, the precision, recall, and F1-score were calculated for 

each class label: Healthy, Normocytic hypochromic anemia, and Normocytic normochromic anemia. These metrics 

offer a comprehensive view of the model’s predictive capabilities. Table 6 summarizes the classification performance 

on the test dataset. 

Table 6. XGBoost Model Performance Metrics 

Class Precision Recall F1-Score Support 

Healthy (0) 0.97 1.00 0.99 67 

Normocytic hypochromic anemia (1) 1.00 1.00 1.00 94 

Normocytic normochromic anemia (2) 1.00 0.96 0.98 54 

Accuracy — — 0.99 215 

Macro Average 0.99 0.99 0.99 215 

Weighted Average 0.99 0.99 0.99 215 

The results in Table 6 indicate that XGBoost achieved an exceptionally high overall accuracy of 99%. It performed 

with near-perfect precision and recall for all classes, particularly excelling in classifying normocytic hypochromic 

anemia. Minor misclassifications were observed in the normocytic normochromic anemia class, which slightly lowered 

the recall to 0.96. A confusion matrix is provided in the following section to further explore the distribution of 

prediction errors. 

 
Figure 4. Confusion Matrix of the XG-Boost Model 

Figure 4 presents the confusion matrix for the XGBoost classifier on the test dataset, highlighting its performance in 

predicting each anemia category. For the Healthy class (Class 0), all 67 instances were correctly classified, with no 

misclassifications, reflecting perfect recall and precision for this category. For Normocytic hypochromic anemia (Class 

1), the model also achieved perfect classification, correctly identifying all 94 cases without any errors, demonstrating 

exceptional capability in distinguishing this anemia type. For Normocytic normochromic anemia (Class 2), out of 54 

actual cases, 52 were correctly predicted, while 2 were misclassified as healthy. There were no misclassifications into 

Class 1, indicating that the model can differentiate normochromic anemia fairly well from hypochromic types, although 

there is minor confusion with the healthy class. 

The confusion matrix confirms the exceptional performance of the XGBoost model, with only 2 misclassifications out 

of 215 test samples, resulting in an overall accuracy of 99%. Notably, the model made zero errors in classifying both 



International Journal of Informatics and Information Systems 

Vol. 8, No. 4, December 2025, pp. 188-200 

ISSN 2579-7069 

198 

 

 

 

healthy individuals and normocytic hypochromic anemia. It also demonstrated very high precision and recall across all 

classes. While there was slight overlap between the normocytic normochromic anemia and healthy classes, this was 

minimal and acceptable. These results indicate that XGBoost is highly effective in anemia classification based on CBC 

data, showcasing its strong potential as a decision support tool for clinical diagnostics. 

To provide a clearer overview of the overall classification performance, Table 7 summarizes the key evaluation metrics 

accuracy, precision, recall, and F1-score for each machine learning model used in this study. These metrics are 

computed using macro averages to ensure fair representation across all classes, especially in a multi-class classification 

setting. 

Table 7. Summary of performance metrics across all four models. 

Model Accuracy Precision Recall F1-Score 

Random Forest 0.9702 0.96 0.84 0.89 

SVM 0.9624 0.97 0.79 0.85 

Naive Bayes 0.9048 0.71 0.78 0.74 

XGBoost 0.9709 0.96 0.85 0.89 

From the summary above, it is evident that the XGBoost and Random Forest classifiers achieved the highest overall 

performance, with both models attaining accuracy scores above 97% and balanced precision–recall values. SVM also 

performed well, although with slightly lower recall. In contrast, Naive Bayes showed the lowest performance across 

all metrics, particularly in precision, suggesting limitations in capturing complex data patterns compared to tree-based 

or margin-based models. These results highlight the suitability of ensemble-based methods like XGBoost for anemia 

classification using CBC data. 

To further evaluate the discriminative power of each classifier in this multiclass anemia diagnosis task, the Receiver 

Operating Characteristic (ROC) curve was plotted using macro-averaged scores. ROC curves illustrate the trade-off 

between sensitivity (TPR) and specificity (1 - false positive rate), providing a visual assessment of model performance 

across all classification thresholds. The Area Under the Curve (AUC) is also calculated to quantify the overall 

performance, where a higher AUC indicates better classification capability. 

 

Figure 5. ROC Curve  

From the ROC curve in Figure 5, XGBoost shows perfect classification with an AUC of 1.00, followed by SVM with 

a strong AUC of 0.99, and Naive Bayes with a moderate AUC of 0.90. All models perform well above the random 

classifier baseline (AUC = 0.5). This analysis highlights XGBoost as the most accurate and reliable model, with SVM 

also performing robustly. While Naive Bayes is less optimal, it remains a viable option when model simplicity and 

speed are prioritized. 
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5. Conclusion 

This study evaluated the performance of four machine learning algorithms, Random Forest, SVM, Naive Bayes, and 

XGBoost for classifying anemia types using CBC data. The results showed that XGBoost performed best, achieving 

the highest accuracy (99%) and perfect AUC (1.00), followed by SVM and Random Forest, which also showed strong 

performance. In contrast, Naive Bayes had lower accuracy and struggled to distinguish normocytic normochromic 

anemia. Overall, the findings confirm that machine learning, particularly ensemble methods like XGBoost, can 

effectively support automated and accurate anemia diagnosis based on blood test data. 
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