Exploring Transformer Life Forecasting through an In-Depth Analysis Utilizing the Random Forest Algorithm in Research and Development

Lei Gan, Hao Wu, Manal Ismail

Abstract


Accurately assessing the life and operating status of transformers has important guiding significance for the formulation of maintenance strategies for power grid companies, and at the same time plays a key role in the risk management of power grid companies. However, the traditional methods for predicting the remaining life of the equipment have the problems of insufficient accuracy or long data training time. In order to achieve a more accurate assessment of the life and status of the transformer, a random forest-based transformer life prediction method is constructed in this paper. Relying on the theory of big data analysis, by mining and analyzing the accumulated data of massive transformers, the life prediction model of the transformer is established and the characteristic parameters affecting the life of the transformer are extracted to predict the life of the transformer. The experimental data research demonstrates that the model can be accurate and effective Predicting the life of transformers has higher prediction accuracy than traditional methods, providing method references for asset management and risk management of power grid companies.


Article Metrics

Abstract: 891 Viewers PDF: 379 Viewers

Keywords


Predicted Lifetime; Random Forest; Transformer; Prediction Accuracy

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

IJIIS: International Journal of Informatics and Information Systems

ISSN:2579-7069 (Online)
Organized by:Departement of Information System, Universitas Amikom Purwokerto, IndonesiaFaculty of Computing and Information Science, Ain Shams University, Cairo, Egypt
Website:www.ijiis.org
Email:husniteja@uinjkt.ac.id (publication issues)
  taqwa@amikompurwokerto.ac.id (managing editor)
  contact@ijiis.org (technical & paper handling issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0