Improving Music Recommendation System by Applying Latent Topics of Lyrics

Khine Zar Thwe, Takashi Yukawa

Abstract


The proposed music recommendation system was developed by using various information filtering approaches based on user context and song context. This study proposes a music recommendation system with Latent Dirichlet Allocation (LDA) by using user listening behavior and analyzing a latent relationship of each song. As a consequence, small musical niche genres without listing history will become a member of their respective topic groups. Modeling topic analysis of LDA is utilized for songs lyric as well as the user action and, then song group preferences support the collaborative filtering recommendation engine. The system addresses the optimization of the cold start problem of adding new items in Collaborative Filtering by lyric analysis with LDA. Predicted ratings for user recalculated by combination matrix of song listening action with binary rating values ​​and latent topic group result of lyrics. In this analysis, a system proposition compared with two models, normal collaborative filtering and user defined genre group preference.

Article Metrics

Abstract: 2385 Viewers PDF: 1129 Viewers

Keywords


Recommendation System; Collaborative Filtering; Lyrics, Latent Dirichlet Allocation; Multimedia Web Application;

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

IJIIS: International Journal of Informatics and Information Systems

ISSN:2579-7069 (Online)
Organized by:Departement of Information System, Universitas Amikom Purwokerto, IndonesiaFaculty of Computing and Information Science, Ain Shams University, Cairo, Egypt
Website:www.ijiis.org
Email:husniteja@uinjkt.ac.id (publication issues)
  taqwa@amikompurwokerto.ac.id (managing editor)
  contact@ijiis.org (technical & paper handling issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0